

Fieldtrip from a software development perspective

Version: April 20, 2023

1. Introduction .. 3

2. First impressions ... 4

2.1. First impressions as a user .. 4

2.2. First impressions as a software developer.. 5

3. Topics of special interest... 7

3.1. The tests .. 7

3.2. Code organization ... 9

3.2.1. Code organization in general .. 9

3.2.2. Private directories versus packages .. 10

3.2.3. Self-contained modules .. 11

3.2.4. Externals .. 12

3.3. Preamble / postamble .. 13

4. Code analysis tools .. 15

4.1. Code duplication ... 15

4.2. Mlint and Code Analyzer ... 15

4.3. Code Compatibility Analyzer ... 16

4.4. Checkcode function .. 16

4.5. Dependency analysis ... 16

4.6. Memory profiling .. 17

5. Appendix: Specific code pieces ... 18

6. Appendix: Questions and selected answers from first impressions as a software developer 20

7. Appendix: A single matlab.unittest.TestCase wrapper ... 23

8. Appendix: Considerations for the naming convention and subdivision of packages 24

9. Appendix: Code examples for reimplementation of preamble / postamble................................ 26

9.1. Current analysis function .. 26

9.2. Analysis function with preamble and postamble v2 ... 26

9.3. Preamble v2 .. 27

10. Appendix: Code Analyzer app results ... 29

11. Appendix: Memory profiling examples ... 30

11.1. Example of single call memory report .. 30

11.2. Example of multi call memory report ... 30

12. Appendix: Results of checkCode complexity report ... 33

3

1. Introduction
This document contains recommendations for improving the quality of the software in the Fieldtrip

toolbox, with a focus on non-functional quality aspects like robustness and maintainability (as

opposed to the functional quality: does the software give the correct answer).

It is part of a MathWorks Community Toolbox Project (CTP). The goals of these projects are to

improve quality and performance of open source Matlab toolboxes. The work for the current CTP is

done by VORtech, in association with Fieldtrip toolbox developers from Radboud University /

Donders Institute for Brain, Cognition and Behaviour.

Improving the non-functional quality of the Fieldtrip toolbox based on the current

recommendations, will make it easier to apply performance optimization. Already during this CTP,

performance optimizations were briefly looked at. However, while looking for the best places to do

performance optimization, various impediments to an overall performance analysis were found.

Thus this document first focusses on those impediments.

This document has three main chapters, each further subdivided in sections. Each section ends with

one or more recommendations. The main chapters are followed by several appendices, that give

additional background information for some of the sections. Additionally, there is an “Appendix:

Specific code pieces” with observations on some details in the code, that are not part of any of the

sections.

4

2. First impressions
Since VORtech is a relatively new participant in the Fieldtrip toolbox, this gives the opportunity to

record how a fresh set of eyes experiences working with and on Fieldtrip. Also, it brings a different

perspective, looking at the code mostly from a software development perspective, instead of that of

a scientific user. The first impression is an important one, since it should encourage a person to want

to work with / on Fieldtrip. This chapter tries to convey the impressions of a first encounter with

fieldtrip, and gives recommendations on improving those first impressions.

2.1. First impressions as a user
To be inviting to new users, there should be a way to quickly get an answer to the following

questions:

- What is Fieldtrip, what does it do, can it do the thing that I want to do?

- How do I start, to get the results that I am looking for?

What if I come to Fieldtrip as a new user, through the github repository. Is it clear what Fieldtrip is,

and what it does?

Before I even get to the README, at the top-level I first encounter a lot of directories, and an
overwhelming number of files.
The README itself is very short and directs me to the website front page for the actual info on what
Fieldtrip is and how to use it. The front page of the website then redirects me to the Getting started
page. That Getting started page starts with two paragraphs that appear to try and warn me off from
trying out Fieldtrip.

If I persist and do want to try out what Fieldtrip is about, the Getting started page has links to 10
different locations that I might want to visit, some of which are again a collection of links.
In those 10 links, the Walkthrough is the first page that directly speaks to me, as a prospective user,
and starts to gently tell me something about how I could be using Fieldtrip. However, it is very quick
in going to the data structures and missing a bit more introduction on the toolbox itself.
If I do get to the tutorial “Introduction to the FieldTrip toolbox”, it also has useful introductory
information, some of which is not in the walkthrough. And this tutorial gives me an idea of how the
toolbox expects me to approach its functions.

Together, the Walkthrough and the Introduction tutorial do have the information to give me an
impression of both the what and the how of Fieldtrip. However, getting there takes many steps, and
has a lot of distractions on the way.

Recommendation: Have a single entry-point page on the website for new users (linked directly from
the README), that gently introduces them to Fieldtrip. Approximately the first parts of the
Introduction tutorial, with some of the first parts of the Walkthrough page. Then the Walkthrough
can follow that with more information on what Fieldtrip does, the Introduction tutorial with how
you are expected to do that yourself, and the Getting started page as the reference to all the other
information that is available.

Additional recommendations:

- Reorganize the top-level directory, so the README can more easily be found, and the
number of files and directories being encountered is less overwhelming. One clear entry
point is more inviting than a hundred possible entry points. See also section Code
organization.

- Have a directory examples within the repository, with example scripts with clear names, that
are directly runnable, and produce a graphical output that speaks to the potential user.

5

Preferably this directory is added after reorganizing the top-level directory, otherwise this
examples directory can easily go unnoticed.

2.2. First impressions as a software developer
To be inviting to prospective contributors, they should be able to quickly answer the following

questions:

- Where to put my addition, and its dependencies?

- Does Fieldtrip already have a function that can be used instead of introducing a new

dependency?

- What should my addition / edit look like (naming, code structure, etc.)?

- How do I check whether my edits to existing functions break other parts of the code?

Here a summary is given of the first impressions, when looking at the code base as a software
developer, with the above questions in mind. This summary is based on various questions that come
up, which are written down in Appendix: Questions and selected answers from first impressions as a
software developer.

The repository content itself does not guide a developer to answers for most of these questions.
There is not enough organization in the directory structure: directories with different status /
purpose are all next to each other, and there are many files and directories at each level. The one
question the repository does answer is the one on where to put additions and dependencies,
however that answer isn’t very satisfying, as it seems to be: all additions go into a high level
directory, possibly the top level, next to a large amount of other files, and all dependencies go into
the private directory of that specific high level directory.

The website does have pages that are related to these questions.

- The architecture page can be used as a reference for where to put additions. However, it
gives the same answer as the repository itself, i.e. in a directory that already has a large
number of files.

- The functions listing (https://www.fieldtriptoolbox.org/reference/) could be seen as a first
answer to whether fieldtrip has certain functionality. However, the web page only gives a
partial list of high level functions. And given the size of the toolbox and the lack of
automated technical documentation generation, it cannot be expected from the website to
be complete. Also, for utility functions, code organization is very helpful to guide developers
in addition to / in lieu of documentation.

- The contributing page (https://www.fieldtriptoolbox.org/development/contribute/) does
have guidelines for what additions should look like, although not all questions are answered
yet (e.g. function naming).

- The page on testing (https://www.fieldtriptoolbox.org/development/testing/) answers how
edits can be tested. However, the main answer on whether an edit affects other code,
appears to be to wait for an email from someone at the Donders Institute on whether your
pull request has passed the tests.

Recommendations:

- To have a more satisfying answer to the question where to put additions and dependencies,
reorganize the directory structure to collect related functions into smaller groups.

- To make it easier to find out what utility is already available, reorganize the directory
structure to group utilities with related purposes.

- To make it easier to find out what is available, expand the reference documentation to
include all public API functions. This would be separate from the existing reference page, as

https://www.fieldtriptoolbox.org/reference/
https://www.fieldtriptoolbox.org/development/contribute/
https://www.fieldtriptoolbox.org/development/testing/

6

that page is dedicated to listing only the most important functions. The expanded
documentation would need be automatically generated, various tools are available to help
with that.

- To have an answer directly in the repository on what is expected of contributions, and to be
in line with the common practice for GitHub, add a CONTRIBUTING.md file. It can mostly link
to various pages on the website, e.g. look quite like the
https://www.fieldtriptoolbox.org/development/ page. Do add a part on naming conventions
for files to that page.

- To make it easy to run at least a relevant subset of tests, update the tests organization

The next chapter has additional background and information related to recommendations on the
code organization and testing.

https://www.fieldtriptoolbox.org/development/

7

3. Topics of special interest
From the above observations, and discussions with the main Fieldtrip developers, a number of topics
have been identified for further analysis. This chapter has additional details on the tests
organization, the code organization, and a specific code construct that is widely used in Fieldtrip.

3.1. The tests
“How do I check whether my edits to existing functions break other parts of the code?“

Although the tests folder does have a lot of tests (over 1000 test files), not all of these are possible
to run on a developer computer. The main limitation is that some tests use datasets that are only
available in the Donders institute. Additionally, tests may have a prohibitive runtime or memory
usage.

To encourage developers to run tests during development, and before submitting a pull request, it is
recognized that it should be easier to run an appropriate subset of tests. It should be possible to
filter tests based on:

- Runtime: to just do a quick check, there should not be hours-long tests in the selection
- memory usage: on a developer computer memory may be limited, there should not be tests

in the selection that require more than the available memory
- datafiles used: some tests require external data, and some tests require data that is not

publicly available, there should not be tests in the selection that require data that is not
available on the developer computer

- Functions under test: to just do a quick check, only select tests that are known to call the
function being edited

There exists a function ft_test (located in the utilities folder) that was meant to provide much of this
functionality. However, it has largely gone unused (the dashboard does not use it) and
undocumented (it is only mentioned in passing in one location in the documentation). It includes a
custom implementation of (unit)test functionality that is also provided by Matlab itself. Because it is
a custom implementation, it cannot use the additional functionality that is available within the
Matlab unittest framework (e.g. reporting in jUnit format), does not allow potential testers to use
the Matlab provided documentation to improve the functionality, and does not let developers that
are familiar with the Matlab unittest framework to build on that knowledge.

Using matlab.unittest.TestCase enables various additional features.
One feature is the use of setup methods, teardown methods and fixtures. These can be used to reset
the matlab session to a correct state for the next test also when a test does error, to close all figure
windows after a test, or to temporarily manipulate what directories are on the path.
Another feature is the ability to easily collect code coverage information, which can be used to
identify functions that are not or only poorly tested, through the CodeCoveragePlugin. The code
coverage result can be exported in Cobertura XML format, which is a generally used format in
continuous integration pipelines, and where various tools are available to help interpret the results.
One such tool is ReportGenerator (https://github.com/danielpalme/ReportGenerator), which has
the ability to merge multiple reports.

Recommendations:
To enable developers to run a valid subset of the tests

- Add info on data use to the tests. This can probably be scripted, by looking for and parsing
the use of the functions dccnpath and ref_datasets, and possibly some other functions.
Similar to runtime and memory use, have a field in the test description for data, with one of
NODATA/PUBLICDATA/RESTRICTEDDATA.

https://github.com/danielpalme/ReportGenerator

8

- Make it possible to select a subset of tests based on the mentioned criteria. Implement this
by taking advantage of what is already available in the matlab unittest framework. This
framework facilitates various selection methods, has additional features that can be useful
for follow up improvements to tests usage, and is very well documented. To be able to select
on the mentioned criteria, two alternatives present itself:

o Alternative one is to wrap each existing test function in a matlab.unittest.TestCase.
The information on runtime etc. can then be stored such that direct selection
through the matlab unittest framework is possible. It gives the most flexibility in
adapting the tests for additional features, and the closest connection with the
matlab documentation on using the unittest framwork. The work to create the
wrappers can be scripted. This option does require that a few changes are made to
both the dashboard and how the octave testing calls the tests.

o Alternative two is to add a single matlab.unittest.TestCase wrapperfunction around
the tests (details in Appendix: A single matlab.unittest.TestCase wrapper) to enable
subset selection. This option does not require changes to the tests scripts, however
it does introduce an additional, non-standard layer and requires more
implementation and maintenance effort.

- Add a test runner utility function, for ease of use and to do the actual selection, and
document how to run a subset of tests

- Add all the utility functions for testing in the test directory itself, possibly including the
MOxUnit code, as that can make them easy to find. To actually find these utilities easily as
entry points for doing testing, the test directory should be reorganized such that the top
level does not directly contain all the test scripts (see the additional recommendations
below on test directory organization).

Additional recommendations:
With the above recommendations in place, additional improvements are possible to the test usage.
Listed in order of priority these would be

- Organize the tests directory with subdirectories that follow the modularity of the main
directory structure. This will help in getting a better view of what is, and what is not tested.
Later, it will make it possible to test if indeed specific modules are self-contained (see also
the section on self-contained modules later in this document).

- Update the runtime and memory usage information inside the tests, and apply overhead
calculations on the outside.
Currently overhead is included in each test’s info. Because the tests are executed with
https://github.com/fieldtrip/dashboard/blob/master/schedule-batch.sh every night, and the
cluster scheduler/monitor will kill jobs that exceed requested resources (i.e. run too long),
currently the requested time and memory are over-allocated. For a test that takes 1 second,
10 minutes are requested. For a test that takes 1 hour, 2 hours are requested. This also
shows from a small sample run where tests were running in under a minute, whereas the
test stated a runtime of 10 minutes.
Consider using the runtime (as reported by the matlab unittest framework) and memory
usage (see memory profiling, peak memory) as reported by matlab, instead of also including
the Matlab startup time and memory use. The Matlab startup time is not relevant when
running multiple tests in a single Matlab session. The Matlab memory use will be different
for each Matlab version and can also depend on installed toolboxes and apps. Both the
startup time and extra memory can easily be added later to the test runtime and memory if
needed. For example for the submission bash script, it would be better if this over allocation
of time and memory were done in the script, rather than in the specification in the m-file
header.

https://github.com/fieldtrip/dashboard/blob/master/schedule-batch.sh

9

- Add GitHub actions to run a large subset of the tests on pull requests. A developer will
typically only test on one Matlab version, and not run all possible tests. To give additional
quick feedback on the quality of the pull request, add GitHub actions to run on a pull
request. The actions can include both the latest Matlab, and the earliest supported (or for
now available as GitHub action: 2020a) Matlab. To have the actions finish faster, multiple
different subsets of tests can be run in parallel. The runner utility can be updated to provide
the test results in a format which can be parsed by github.

- Add GitHub actions to run a large subset of the tests on Octave. Matlab users will probably
not test Octave compatibility, whereas Fieldtrip does want to be compatible with Octave. A
possibly useful GitHub action for this effort is https://github.com/joergbrech/moxunit-
action. Not all matlab unittest framework features are directly compatible with Octave
testing, so this will require code additions as well, or possibly the current
contrib/MOxUnit_fieldtrip within Fieldtrip already has most of what is needed.

- Add GitHub actions (triggerable or automatic) that run all nondata tests, if the default on-
pull-request action does not include them all.

- Add GitHub action (triggerable or automatic) that runs all the public-data tests. This would
need to include an action step to download the required data, and possibly code changes for
the tests to be able to find the data.

- Consider updating the dependencies information. This information is aimed at listing the
public API functions used, not at giving a full dependency tree. It should be quite possible to
parse the output of a profiler session around a test (added e.g. through a trigger in the
runner) and retrieve the public API functions that are touched by the test. This can then be
used to update the dependencies information.

- Consider updating the fieldtrip/dashboard repository to use the wrapper and runner.

3.2. Code organization
“Where to put my addition, and its dependencies? Does Fieldtrip already have a function that can be

used instead of introducing a new dependency? How do I check whether my edits to existing

functions break other parts of the code?”

3.2.1. Code organization in general
How code is organized has a large influence on how easy it is to do quality development. It affects
ease of testing, how easy it is to find whether functionality already exists, how easy it is to get an
overview of the codebase, where there are virtual boundaries within the codebase.

The current organization is described in
https://www.fieldtriptoolbox.org/development/architecture/. The main items to mention here are
that functions are divided into three categories (high-level, low-level and private) and the directory
structure is set up to reflect a modular design. The distinction between high-level and low-level
functions is related to the modular design, in that each module should be self-contained, and thus
low-level functions should not call high-level functions. The private functions category is related to
the modularity in that each module should have a stable public API, and the private functions are
explicitly excluded from that API.

The directory organization approximately follows the architecture. However, the “Fieldtrip main
functions” from the architecture image are not contained as such and placed above the modules.
Instead, all the main functions are next to each other directly in the top level of the directory
structure, next to the high level modules (distributed computing and contrib.), and next to the
submodules. The de-facto entry point to fieldtrip, the ft_defaults function, is also located at this
level.

https://github.com/joergbrech/moxunit-action
https://github.com/joergbrech/moxunit-action
https://www.fieldtriptoolbox.org/development/architecture/

10

Recommendation: Reorganize the top level of the directory structure to more closely match the
architecture, and make the entry point function stand out. This can be achieved by adding a
directory main, that holds all functions that are now at the top level, except for ft_defaults. The
submodules as identified in the architecture would also be moved into this directory. Consider
relabeling the “external” submodule to a high level module and keeping it at the top level.

3.2.2. Private directories versus packages
“Finally, we have private functions that by design cannot be called by the end-user.”
https://www.fieldtriptoolbox.org/development/architecture/

Having lots of functions in private directories does make a clear distinction between the public API

and the internal functions. However, there are also considerable drawbacks to having many private

directories, with many functions in each:

- Within a private directory, the code cannot be organized into directories any further. Thus, it
is not possible to apply a modular design there, or to group related functions.

- Further directory subdivision within modules is severely discouraged, since each directory
would need its own private directory, with copies of all the functions commonly used within
the module. Thus, code organization through grouping of related functions is not used as
much as would be helpful for a better understanding of the code dependencies and for the
discovery of what functionality is available within a module.

- Since functions in a private directory are only visible from the directory level directly above
it, those functions are not reachable from the test directory. Thus, no unit testing is applied
to functions in private directories, whereas these are the building blocks that the larger
functions are built on.

- There is a lot of file duplication, because to have an internal utility function available for use
in different parts of the code, the file needs to be copied to every related private directory.

- It is much harder to discover what utility functions are already available. A utility can be
present in another private folder, but not in the one for the level where a function is being
added or edited. This leads to functionality duplication (different name, same purpose) and
functionality discrepancies (same name, different purpose).

Within the Matlab environment, using private directories used to be the only reliable way of
preventing users from developing code that accidentally depends on what Fieldtrip considers
internal functions. This is because a common practice among Matlab users is to add all directories
and sub directories of a toolbox to the Matlab path. Once that is done, all functions within the
directory structure are visible to the code, without any indication of where they are coming from.
For example, a user can easily start using the function istrue (which converts specific string inputs to
a boolean true or false value) in his own code, without realizing that Fieldtrip considers this an
internal function, and the next Fieldtrip release will have renamed the function, or changed what it
does.

When Fieldtrip started with the current architecture, using packages was not an option yet. Fieldtrip
aims to be backward compatible with about 5 years of Matlab versions. So packages being
introduced in Matlab R2008a (and soon after also in Octave) were too new a feature for use in
Fieldtrip when the current architecture came into being (in March 2011 already the modules and
private-folders architecture with file synchronization is clearly visible). Also, within the Matlab
community, this feature was at first seen as a part of the object-oriented features that were
introduced at the same time.

By now, using packages and namespaces in Matlab is a viable alternative way of distinguishing
between public and internal functions. Mathworks themselves are also heavily using packages in any

https://www.fieldtriptoolbox.org/faq/why_are_so_many_of_the_interesting_functions_in_the_private_directories
https://www.fieldtriptoolbox.org/development/architecture/

11

newer features they introduce to the language. And there too, packages are used to distinguish
between public and internal functions. From
https://nl.mathworks.com/help/matlab/matlab_oop/scoping-classes-with-packages.html:
 “Internal Packages“; “MathWorks® reserves the use of packages named internal for utility functions
used by internal MATLAB code. Functions that belong to an internal package are intended for
MathWorks use only. Using functions or classes that belong to an internal package is discouraged.
These functions and classes are not guaranteed to work in a consistent manner from one release to
the next. Any of these functions and classes might be removed from the MATLAB software in any
subsequent release without notice and without documentation in the product release notes.”

Recommendation: Use packages instead of private directories for distinguishing between public and
internal functions, to resolve the drawbacks of having many private functions as mentioned above.
The exact naming of and hierarchy within the packages can be a gradual development. Various
things to take into account when deciding on the naming and location of packages have been listed
in Appendix: Considerations for the naming convention and subdivision of packages.

3.2.3. Self-contained modules
The Fieldtrip architecture page (https://www.fieldtriptoolbox.org/development/architecture/) states
that one of the aims is for the low-level modules in FieldTrip to be fully self-contained. For the qsub
and fileio modules, this goal is materialized in that they have their own repositories within the
fieldtrip organization on github (https://github.com/orgs/fieldtrip/repositories), next to the main
fieldtrip repository.
However, this goal is at odds with the architecture decision to give the utilities module a special
treatment, currently phrased as “There is an exception for the utilities directory which allows lower-
level functions to be called by the end-user at the level of the main FieldTrip functions.” And indeed
functions from the utilities directory are called directly in many places in the other modules.
Thus even the fileio module, which does have its own repository, is not usable without also getting
the utilities directory from the main fieldtrip repository.

Recommendation:

- Update the documentation to be more clear that self-contained is not strict, but includes the
utilities directory as a dependency.

- For modules / directories that are expected to be self-contained, add tests to check that
they are indeed self-contained. Tests for functions in that module should be (able to) run
with only that module’s directory added to the Matlab path.

- For modules that are provided as separate repositories, have everything in that repository
that is expected for an independent piece of software. This would include:

o At least a minimum of documentation
o The software in a form that can be run as is, or information how to get the

dependencies
o Tests that show the software works correctly (possibly just using a subset of the

Fieldtrip tests is enough for this, see also the section on tests earlier in this
document)

- For modules that are provided as separate repositories, since the modules will need more
than just their own directory from the main Fieldtrip repository, the module repository
should be set up such that it is easy to synchronize all the needed parts from the Fieldtrip
repository to the module repository.

Additional recommendation: For modules that are provided as separate repositories, create a script
in the module repository that largely automates the synchronization of the various parts
(submodule, utilities, tests) from Fieldtrip towards the module repositories. Then use it in a Github

https://nl.mathworks.com/help/matlab/matlab_oop/scoping-classes-with-packages.html
https://www.fieldtriptoolbox.org/development/architecture/
https://github.com/orgs/fieldtrip/repositories

12

action that automates even more steps of the synchronization. The Github action can be set to
automatically run whenever a new Fieldtrip release is created, or triggered manually. And can add
the changes directly to the main branch of the module repository, or only create a branch-and-pull-
request that is first tested independently (for instance by a github action in the module repository)
before the changes are added to the main branch of the module repository.
Since the source is here the main Fieldtrip repository, letting this workflow run fully through
automated triggers is more feasible than for the externals in Fieldtrip, where the source of the
changed code is outside of Fieldtrip.

3.2.4. Externals

Does Fieldtrip already have a function that can be used instead of introducing a new dependency?

How do I check whether my edits to existing functions break other parts of the code?

Fieldtrip includes a directory named “external”, which according to its README, “contains toolboxes
that are not maintained by the FieldTrip maintainers. These toolboxes are or can be used in
combination with FieldTrip and are provided here with permission of the original toolbox authors as
courtesy to the end-users.”
However, looking at the content and commit history of this directory, they show that these
toolboxes are not treated the way externals are usually treated. The commit history shows that the
source of external toolboxes is modified directly within the fieldtrip repository, separate from
changes in the original source. For example, the file synchronization utility also updates files within
the externals part of the repository. Also, fieldtrip specific functions are called from within functions
in these toolboxes. A quick search shows that at least artinis, bemcp, dipoli, dmlt and mmfmatlabio
use ft_ functions, like ft_error and ft_getopt. Because these toolboxes are modified directly in the
Fieldtrip repository, and call Fieldtrip specific functions, synchronization with the external source, for
instance to push or pull bugfixes, is very hard.

It can be necessary to modify an external, to be able to use it as part of Fieldtrip. In order to keep
track of what exactly has changed, and be able to push to and pull from the original source, a
separate intermediate repository within the fieldtrip organization can be created for such an
external. For these repositories, the main branch follows the outside source unconditionally. And a
separate branch is used to apply the Fieldtrip specific edits. This branch is then used to update the
specific external within Fieldtrip. And changes to that external within Fieldtrip should be ONLY from
synchronization with that branch.

Recommendations:

- Commits to external subdirectories in Fieldtrip, should only apply changes that are a
synchronization to a specific state of the upstream source. A commit to an external in
Fieldtrip should be able to indicate the exact external reference that is the basis for the
commit.

- For externals with both active outside development and Fieldtrip specific edits, create an
intermediate repository within the Fieldtrip GitHub organization, to facilitate the
synchronization. When the outside source already has a repository on GitHub, the GitHub
fork workflow can be used to create a Fieldtrip specific fork repository.

- For externals with no (relevant) outside development and (ongoing) Fieldtrip specific edits,
consider relabeling them as ‘integrated’. This makes it clear that, although they are not
considered a part of Fieldtrip, they are also not expected to be directly synchronizable with
their upstream, and can be freely edited within Fieldtrip.

Additional recommendation: For externals that get their own fork within the Fieldtrip GitHub
organization, create a script in the Fieldtrip fork that helps in automating the synchronization of the

13

external towards Fieldtrip. This can be a part of the branch that contains the Fieldtrip specific
changes. Once there is a script, it can be used as the basis for a GitHub action that prepares even
more of the synchronization towards Fieldtrip.

3.3. Preamble / postamble
“What should my addition / edit look like (naming, code structure)?”

The preamble and postamble functions are used in all high level analysis functions, to do
bookkeeping that is always nearly the same. However, the current implementation has been found
to have certain drawbacks.

The main drawback of the current implementation of preamble and postamble is that it is not
transparent that these functions modify the workspace of the function they are called from. While in
effect, they do add several new variables, and modify existing variables (in particular the cfg
variable).
A related drawback is their use of assignin, evalin and worker scripts, which makes it hard to follow
what happens, and where. And the use of assignin and evalin also makes that currently, nested
functions cannot be used in any function that calls preamble or postamble. Because the use evalin
and assignin is not compatible with nested functions, as also stated in the documentation:
https://nl.mathworks.com/help/matlab/matlab_prog/resolve-error-attempt-to-add-variable-to-a-
static-workspace.html. Even though regular functions and subfunctions are usually to be preferred
over nested functions, not being able to use nested functions at all is an unnecessary restriction.

From a first look at what the preamble and postamble worker scripts try to achieve, it seems
possible to rework them to a version 2 implementation, that does show transparantly what variables
are added / edited in the calling function’s workspace.
The final implementation could have a single function call for each of preamble and postamble. That
call takes multiple cell arrays as input, one for each preamble ‘script’ that should be executed,
followed by any other input data needed by that particular ‘script’. The special cfg input would be a
shared first input. The call will return cfg, and for the preamble a single variable that holds any extra
info needed by the postambles, and the extra variables that are requested from the loadvar option
as varargout output towards named variables in the caller function.
The final implementation does not have to do any assignin calls or addition of extra variables under
the hood. And most likely it will not even need to call evalin.
Another result will be that the functions that use preamble and postamble, can get rid of the
separate ft_nargin, ft_nargout and ft_revision variables.

An intermediate step in the implementation, that could be kept also in the final situation to provide
backward compatibility, would be to convert the worker scripts into regular functions, called in a
regular fashion from preamble / postamble. And do all the interaction with the caller workspace only
in preamble / postamble themselves through assignin and evalin (to get variable values from the
caller) calls. Only one struct-type variable would be added to the caller workspace, to hold all the
information that needs to be passed on from preamble to postamble.

Recommendation: Replace preamble and postamble with preamble_v2 and postamble_v2, where
the _v2 functions are transparent in what inputs they use and what outputs they provide, and do not
modify the caller workspace under-the-hood.
Do a step-by-step implementation, that includes backward compatibility to support users that have
written their own analysis functions.

https://nl.mathworks.com/help/matlab/matlab_prog/resolve-error-attempt-to-add-variable-to-a-static-workspace.html
https://nl.mathworks.com/help/matlab/matlab_prog/resolve-error-attempt-to-add-variable-to-a-static-workspace.html

14

- First implement a _v2 function for each of the individual worker scripts, that only work with
inputs and outputs. Call this new _v2 version directly in preamble / postamble, and do the
caller workspace interaction only in preamble / postamble.

- Then, create the overall _v2 calls, that can then internally look very much like the
preamble/postamble, reusing the calls to the individual parts. In the overall _v2, regular
inputs / outputs will be used instead of interactions with the caller workspace.

- Apply the overall _v2 calls in the code base, and update the documentation.

Some example of what the v2 implementations would look like, has been added in Appendix: Code
examples for reimplementation of preamble / postamble.

15

4. Code analysis tools
To asses code quality, many tools are available that can help to evaluate specific aspects. Some of

these are most useful for a one-time analysis. Others can also be used in an automated fashion to

continuously monitor a quality aspect and provide feedback to developers.

This chapter aims to introduce these analysis tools and provide recommendations on how to use

them with Fieldtrip. Most of the tools mentioned are provided as part of the Matlab distribution.

4.1. Code duplication
Applying a code duplication analysis tool on the current Fieldtrip will give a lot of duplication sites,
since there is known function duplication through the synchronization mechanism. Thus it is
currently hard to assess if there is also additional code duplication. However, even while looking at
only a few random functions, there were indications that there is also in-function code duplication.
There are tools that can help to detect code duplication.

- MathWorks has PolySpace for example
(https://nl.mathworks.com/products/polyspace.html), however, that appears to be for
c/c++ code only.

- There is the copy-paste detector (CPD) of PMD, which claims to support Matlab
(https://pmd.github.io), though only for the CPD part, not for all of PMD. Not yet checked
whether this only detects exact matches, or also near-exact duplication.

- It might be possible to adapt pylints similarity checker to run correctly on Matlab code
(currently at https://github.com/pylint-dev/pylint/blob/main/pylint/checkers/similar.py)

Recommendation: Apply a code duplication analysis tool on the code base, once the known function
duplication has been removed, to help find additional code duplication.

4.2. Mlint and Code Analyzer
The well-known mlint errors and warnings (that show up as squiggles in the matlab editor) can now
easily be viewed in one overall report, since as of Matlab 2022b there is Code Analyzer App
(https://nl.mathworks.com/help/matlab/ref/codeanalyzer-app.html), and a codeIssues function
(https://blogs.mathworks.com/developer/2023/03/15/static-analysis-code-checking-and-linting-
with-codeissues/). Previously it was also possible to collect these messages, but not this easily.
Running the analysis on the full fieldtrip folder gives [128 error, 18143 warning, 29909 info]
messages. Note that this is a total. For instance, the warning “TRY statement should have a CATCH
statement to check for unexpected errors.” is given on 235 different lines in the code, concentrated
in even fewer different files.

For a screenshot of the errors summary, see Appendix: Code Analyzer app results.

Recommendations:

- Make a pass over the code base to get rid of the error messages.
- Update the coding guidelines to require that files should in principle have no mlint error or

warning messages (which can be checked with the codeIssues function).

Additional recommendations:

- Make a pass over the list of warning messages, and determine which are serious enough to
require fixing. Warnings can indicate various types of problems, of which some are more
serious than others.

- Add an automated test to detect whether edits increase the number of error and warning
messages. And schedule a periodic update of the reference number-of-errors and number-
of-warnings (it should be going down over time).

https://nl.mathworks.com/products/polyspace.html
https://pmd.github.io/
https://github.com/pylint-dev/pylint/blob/main/pylint/checkers/similar.py
https://nl.mathworks.com/help/matlab/ref/codeanalyzer-app.html
https://blogs.mathworks.com/developer/2023/03/15/static-analysis-code-checking-and-linting-with-codeissues/
https://blogs.mathworks.com/developer/2023/03/15/static-analysis-code-checking-and-linting-with-codeissues/

16

4.3. Code Compatibility Analyzer
Compatibility of the code with a given Matlab version, can be checked with the Code Compatibility
Analyzer. Through the Matlab command line interface the functions analyzeCodeCompatibility and
codeCompatibilityReport have been available since 2017b, and as an App since 2022b. This check
currently identifies [6 files with syntax errors, 25 + 14 cases of code that will not work in the 2022b
version and sometimes have not worked since 2015b, 94 cases of possibly changed behavior]. This in
addition to 40 + 9 cases that might give problems in the future, and 2772 improvement suggestions.
Note that there is an overlap with the mlint / Code Analyzer results (see above), so problems may
show up in both reports.

Recommendation: Make a pass over the code base to fix the syntax errors and the not-in-2022b
cases.

Additional recommendations:

- Make a pass over the cases of possibly changed behavior, since these may cause different
results in different Matlab versions, to check whether they are problematic or not. Often
code that is known to still be ok, can be adapted to no longer show up in the analysis report.

- Add an automated test to detect whether edits increase the number of errors and serious
warnings (will-not-work, changed-behaviour). And schedule a periodic update of the
reference number-of-errors (it should be going down over time)

4.4. Checkcode function
The function checkcode, with the option –cyc or –modcyc, will give “the McCabe cyclomatic
complexity of each function in the file. In general, lower complexity values indicate programs that
are easier to understand and modify. Evidence suggests that programs with higher complexity values
are more likely to contain errors. Frequently, you can lower the complexity of a function by dividing
it into smaller, simpler functions.”
Given that the analysis functions follow a similar pattern in general, that introduces some
complexity, a low complexity number is not to be expected for the main analysis functions. Thus the
general guidelines with boundaries at 10, 20 and 50
(https://nl.mathworks.com/help/matlab/matlab_prog/measure-code-complexity-using-cyclomatic-
complexity.html) may not directly apply. However, complexity numbers above 100 do indicate that a
function implementation will probably be hard to follow.
With some scriptingcheckcode could be used to find the fieldtrip files that are the most. A first
example and result can be found in Appendix: Results of checkCode complexity report.

Recommendations:

- When code is being refactored, apply the checkcode function to evaluate the before and
after complexity, and aim for a reduction in complexity.

- Add (more) tips on general ways to reduce complexity to the coding guidelines. Quick gains
are using switch-case instead of if-elseif, and placing large chunks of related code into
subfunctions.

4.5. Dependency analysis
A dependency analysis gives information on how functions interact with other functions. Matlab
does have functionality for dependency analysis, however as far as I can find it is only available
within the Matlab Project functionality. Thus first a Matlab Project needs to be created for Fieldtrip,
before the dependency analysis can be used. Creating a project did work, although it took quite

https://nl.mathworks.com/help/matlab/matlab_prog/measure-code-complexity-using-cyclomatic-complexity.html
https://nl.mathworks.com/help/matlab/matlab_prog/measure-code-complexity-using-cyclomatic-complexity.html

17

some time. However, accessing the dependency analysis though the GUI of the Matlab Project
failed, a message came up that it was unable to finish creating a graph.
There is also a command line interface to the dependency analysis (since 2019a), that still relies on
first creating a Matlab Project. The reference for the Matlab Project
(https://nl.mathworks.com/help/matlab/ref/matlab.project.project.html) shows the command line
interface for matlab projects, including examples of interacting with the dependencies information.
More examples, for instance of how to get dependency information for particular files, can be found
on https://nl.mathworks.com/help/matlab/matlab_prog/create-and-edit-projects-
programmatically.html, section Get File Dependencies.
Note that even once the Matlab Project is created, calling the updateDependencies method again
takes a long time.

Recommendation: Do not invest time yet in dependency analysis. This tooling can be useful if there
is a particular goal to be achieved that requires information on function dependencies. However,
there does not appear to be such a goal at present. Also, the use of many private directories with
duplicated functions makes that the dependency analysis will not be exhaustive in showing what
functions depend on a certain lower level function, making it less useful in evaluating the impact of
changes to a lower level function.

4.6. Memory profiling
Matlab has a built in profiling function, profile, that can give detailed information on where time is
spent when running code. As with all profiling this introduces some overhead, thus the results may
not be precisely represent where the time is spent when running without the profiler. But in general
doing a profiling session will give useful information as to where code might be improved to reduce
runtime.

This profile function also has an (undocumented) option ‘-memory’ to track not only runtime, but
also memory usage (use ‘-nomemory’ to explicitly turn it off again). This can be very useful if
memory usage is suspected to be the cause of problems. However, note that enabling this option
introduces even more overhead, and depending on the computer used may considerably slow down
the code (it can go from 3 to 10, but also from 3 to 160 seconds). Thus, this option should not be
used to evaluate the effect on runtime directly, only to identify how memory is allocated and freed.
Changes to the runtime of the code should be evaluated separately. And, where possible it should
be applied only to the piece of code that is under investigation (e.g. using a script with specially
prepared inputs), and not directly at a high level.

Interpreting results of a memory profiling session can be tricky, but also very useful. For instance,
the number of times a line is executed needs to be taken into account when looking at the effect of
that line on memory. Total / cumulative memory usage is not immediately available as information
in the report. Thus a timing bottleneck, even if it has significant memory usage, may just be a
symptom of overall high memory usage. And fixing that one location’s memory will just move the
problem further on in the code.

Recommendation: When performance of the code is being evaluated, use the timeit and profile
functions to identify runtime bottlenecks. Then, follow up with a memory profiling run, only on the
bottleneck location, using dedicated inputs, to get information on the amount of memory
interaction at that location.

https://nl.mathworks.com/help/matlab/ref/matlab.project.project.html
https://nl.mathworks.com/help/matlab/matlab_prog/create-and-edit-projects-programmatically.html
https://nl.mathworks.com/help/matlab/matlab_prog/create-and-edit-projects-programmatically.html

18

5. Appendix: Specific code pieces
While looking through the Fieldtrip code base in order to get an overview, and be able to make
general recommendations, also various functions were looked at in a bit more detail. Below are
questions and remarks that do not directly apply to Fieldtrip in general, but only to specific
functions.

https://github.com/fieldtrip/website/pull/657

Ft_defaults: mainly used in the top-level functions, as these are all considered entrypoints. However,
ft_defaults is also called in some not-top-level functions. In functions in the contrib, realtime,
utilities and even in the external folder?

Why is spike located within contrib?
What even is contrib?

Why does getopt have a mex version?

The history of mesh_sphere in the external/dipoli is odd for an external. And it looks like it is now
totally unused there.

In ft_freqanalysis, the switch case statement around line 280, doing method specific preparation.
Most of the cases look similar, with a list of cfg fields setting, and some error checks.

- The case for mtmconvol looks quite different from the other ones, whereas it could be
structured more similar, especially with a small subfunction to set the cfg.toi value.

- The case for mvar suddenly does a function call and an early return, instead of only cfg
preparation. To me, this should be more explicit, which can be achieved by treating that
method separately, before going into the switch case.

In ft_crossfrequencyanalysis

- Multiple places where there is a strcmp(xxx, ‘no’), whereas there is also an istrue function.
- Why is the cfg option output for these even a string, instead of a boolean value? Why not

have ft_checkconfig or ft_getopt return a boolean value for such fields?
- In the swtich case for “do the actual computation” around line 215, multiple cases have the

exact same code.
- The case ‘mi’ has an if-else, where the inner part of both branches is exactly the same. Why

is that part not a subfunction? (A nested function might be even nicer, since that could go
directly at that location, but the preamble prevents use of nested functions?)

Naming of ft_xxxx_option versus ft_xxxx combined with cfg.method
There are many analysis functions that have a switch case on cfg.method. However, there are also
some top-level functions that appear to have the method as a suffix. Why?

In ft_artifact_nan, there is a double loop, where every inner loop iteration causes a memory
allocation. As also suggested by the mlint squigle, it would be more efficient to pre-allocate, just
before the inner loop.

Fieldtrip compat folder has entries that go back to before 2013b. However, the table datatype is
being used in multiple places in fieldtrip, so even though the matlablt2013b folder has a istable
function, isn’t backward compatibility currently limited to 2013b and later?

https://github.com/fieldtrip/website/pull/657

19

Fixcoordsys uses an if-elseif construct that has no final else statement. Not sure if the static code
analysis tools pick that up. However, even if it is correct to do-nothing, there should be an else that
describes the motivation why it is correct. Similar for switch case statements, they should always
have a final otherwise.

Website, https://www.fieldtriptoolbox.org/development/architecture/: “All high-level functions
within the FieldTrip directories may call functions within the same directory, from other directories
at the same hierarchical level, or directories lower in the hierarchy. But, low-level functions should
not call high-level functions. There is an exception for the utilities directory which allows lower-level
functions to be called by the end-user at the level of the main FieldTrip functions.”
I think I understand the idea, however I don’t understand the last sentence’s phrasing.

Something that was not looked at yet, is an answer to “would like to refactor some of the plotting
related functions, but not sure how”
Most plotting functions are like regular fieldtrip functions, but with a lot of subfunctions for e.g.
callbacks. Only ft_plot_mesh_interactive uses a classdef, and is actually the only object-oriented file
in the fieldtrip code (except for certain places in the external folder).

https://www.fieldtriptoolbox.org/development/architecture/

20

6. Appendix: Questions and selected answers from first impressions as a software

developer

There are about 100 top level functions. This is quite overwhelming.

- How to find the right function? What functions have related functionality? Why aren’t the
data conversion (x2y) functions together in a separate directory?

“Finding the right function is indeed a challenge. Only a selection of all analysis functions is linked on
https://www.fieldtriptoolbox.org/reference/. And since these are direct links to the github repository,
the help content of the functions is not part of the website, and not indexed by search engines.”

- Automatically generating technical documentation, to be included as a part of a website
should be feasible. Sphynx for instance (https://www.sphinx-doc.org/en/master/) has
extensions that let it parse Matlab files (https://github.com/sphinx-contrib/matlabdomain)
and produce output in markdown format or restructured text. Thus the technical
documentation can either be made a part of the official Fieldtrip website, or be hosted
separately on Read the Docs (https://readthedocs.org/).

Many top level folders.

- How do they relate to each other? Do they all serve a similar purpose?

Only some of the top-level folders are considered part of the public interface, according to what is
put on the matlab path when running ft_defaults, and the information in
https://www.fieldtriptoolbox.org/development/architecture/ The architecture page has some
background on the current architecture.

- Why are there many non-interface folders on the top level, instead of having them all
together in one folder, called developers or resources or extras or …? Or even in one or
more subfolders of utilities?

There is very little hierarchy in the directory structure. No namespaces / packages at all.

- Why not? How do you know what functions are related?

A lot of functions in each ‘private’ directory.

- What is the interdependency between the functions in a private folder? How to apply unit
testing to functions in private directories?

A lot of function duplication.

- How to know that indeed all copies are synchronized, so bugs are fixed? How to check that
each dependent function still works correctly after synchronization of the dependencies?
How to know if the same function name is not used for different functionality elsewhere in
the code? The duplicate functions are synchronized based on file change time on disk?

“There's a synchronize_private.sh script in fieldtrip/bin, that ideally lists the locations of where the

functions in ../private are duplicate. This script is also used to synchronize the various copies, once

one of the copies is changed on github”

Especially in the private folders, there is a mix of functions that do and do not have the ft_ prefix.

- When does a function get the ft_ prefix?
“Sometimes there is a public function without the prefix, that is usually for historical reasons, to keep
the API stable. In private directories, also historical reasons to do have the ft_ prefix sometimes, but
there it should not be used. Coding guideline should be updated for the private functions not to have
the prefix.”

https://www.fieldtriptoolbox.org/reference/
https://www.sphinx-doc.org/en/master/
https://github.com/sphinx-contrib/matlabdomain
https://readthedocs.org/
https://www.fieldtriptoolbox.org/development/architecture/

21

Most analysis functions are named with the scheme ft_ANALYSISNAME, and have internal branching
on cfg.method. However, some are named with the scheme ft_ANALYSISNAME_SPECIFIC.

- Why don't all analyses follow the internal-branching strategy?
“This applies to statistics functions. These are present so that we keep elaborate documentation to a
specific method on one location”

Functions with many lines of code.

- How to do unit testing, when the units are very big?

The analysis functions appear to follow a similar code structure. This does help in recognizing the
main parts of the functions (initialization, input checking, data preparation, main analysis, output
organization, finalization).

The source of external toolboxes is modified directly within the fieldtrip repository.

- How to get changes in from and out to the original toolbox? How to know what has and has
not been synchronized with the external source?

There is a test directory, however a brief look through its readme and the follow-up links towards
the dashboard, gives the impression that I will be unable to test my own changes. And the test
directory has more than 1000 files in one directory!

- How can I run the tests locally? Which tests are unit tests for specific lower-level functions,
which are tests on public-API functions, which are system tests on a workflow? What set of
tests can be run quickly to give basic confidence in changes? Over 50 inspect_ type tests,
who runs these? When is the output of the inspect_ tests checked? Why haven't they been
converted to regular tests? Why are the obsolete_ tests still in the test directory?

Lots of mex files, all over the code base, and mixed with other files.

- Why is the source code sometimes directly next to the m and mex files?
“The idea is that the fieldtrip-native mex-files' source code is in fieldtrip/src/, all the other Mex-files

seem to be in external packages mostly, and a bit in the realtime module. I found one instance of a

*.c file in a private folder. This one should be removed. Also we have discussed removing the

external/dmlt altogether, which would get rid of a large chunck of code anyhow.”

The modules of Fieldtrip are supposed to be independent: “We aim for the low-level modules in
FieldTrip that they have a consistent API and are fully self-contained, i.e. if you copy the
corresponding directory out of the main FieldTrip directory, they should still work. This facilitates the
low level code to be reused in other projects.”

- Should they not be separate repositories then, so it is possible to test this goal is achieved?
Which tests are for what module? Is this statement true for all the low-level modules? Is this
feature ever used?

The compat folder has code to make fieldtrip compatible with older Matlab releases. The oldest
release mentioned is R2010b. The website states that 5 years of backward compatibility is at least
aimed for. The dashboard script (https://github.com/fieldtrip/dashboard/blob/master/schedule-
matlabs.sh) shows that only R2012a and later is tested. The code has locations where the table
datatype is used, introduced in R2013b.

- With the table datatype being used in multiple places in fieldtrip, isn’t backward
compatibility currently limited to 2013b and later?

- With only 2012a and later being tested, compatibility for earlier versions does no longer
exist effectively?

22

- Should not some of the compat directories be removed then? Which ones exactly? What
policy is used here?

23

7. Appendix: A single matlab.unittest.TestCase wrapper
The standard way of using a matlab.unittest.TestCase, defines the tests as methods of a class that
derives from matlab.unittest.TestCase. Selecting a subset of those tests can be done by grouping
them in different methods blocks, each with a different set of tags. See for example
https://nl.mathworks.com/help/matlab/matlab_prog/tag-unit-tests.html
Reusing the current implementation of the tests is possible, by setting up a matlab.unittest.TestCase
that collects the available test, and through test parameterization enables selecting specific subsets.
The main ideas can be derived from this example,
https://nl.mathworks.com/help/matlab/matlab_prog/define-parameters-at-suite-creation-
time.html
The wrapper would need to first collect all available tests, and parse them to extract information on
runtime, memory use, data use etc. This can probably re-use code available in ft_test. Each of these
properties will become a separate testparameter, and by defining the ParameterCombination
attribute on the single test method as sequential, one testcase per test function will be created.
The test runner utility function can then apply constraints on the parameters
(https://nl.mathworks.com/help/matlab/ref/matlab.unittest.constraints-package.html and
https://nl.mathworks.com/help/matlab/ref/matlab.unittest.testsuite.selectif.html), to select a
subset of tests, for instance tests with a runtime of less than 3 minutes, using NODATA and having a
name starting with test_.

https://nl.mathworks.com/help/matlab/matlab_prog/tag-unit-tests.html
https://nl.mathworks.com/help/matlab/matlab_prog/define-parameters-at-suite-creation-time.html
https://nl.mathworks.com/help/matlab/matlab_prog/define-parameters-at-suite-creation-time.html
https://nl.mathworks.com/help/matlab/ref/matlab.unittest.constraints-package.html
https://nl.mathworks.com/help/matlab/ref/matlab.unittest.testsuite.selectif.html

24

8. Appendix: Considerations for the naming convention and subdivision of packages

A first subdivision would already need to contain separate packages for

- Common functions: all functions that are currently synchronized over multiple private
directories, and any other functions that are duplicated but not yet synchronized

- Toplevel functions: the non-common functions in the private directory at the repository top

level

- Utilities: the non-common functions in the private directory inside the utilities directory

- Specest: the non-common functions in the private directory inside the specest directory

- And many more: a separate package for the non-common functions in the private directory

inside each separate submodule directory

Eventually there should be additional hierarchy / grouping within the packages.

To make clear that these are for internal use, a naming convention would include “internal” in the
name. To distinguish from internal packages from other sources, the naming convention would start
with “ft”.

Each level of hierarchy in package names requires a similar hierarchy in directory structure. Using a
'.' in the name of a package directory does not create a multilayered package (actually, it will break
Matlab’s import mechanism such that the contents of the directory cannot be used).

As an example, possible names for the package containing the common functions could be
‘ft.internal.common’, ‘ft_internal.common’ or ‘ft_internal_common’, each requiring a different
directory layout. Similary, the package containing the toplevel internal functions could be
‘ft.internal.toplevel, ‘ft_internal.toplevel or ‘ft_internal_toplevel’.

The package ft_internal.common would contain the functions that are used by multiple different
modules, i.e. the files that are now synchronized over multiple directories. The name
ft_internal.shared would also be possible, however that name has more potential to be
misinterpreted by users, as the internal and shared parts give conflicting messages. The name
ft_internal.utilities would have been possible, except that name is already to be used by the utilities’
module for its internal functions.

A module should only use functions from ft_internal.common and its own package. This to keep as
close as possible to the self-contained goal (see also the section on self-contained modules, and the
next consideration).

The module specific package can be inside the module directory. The ft_internal.common package
might be best put in the utilities directory, next to the ft_internal.utilities package. Since functions
from the utilities directory are used in other submodules, this directory is already needed alongside
other submodules when those submodules are used independently. Adding the common package
here, has the advantage that it will be taken along automatically.

A namespace in Matlab can be built from directories in multiple locations. Thus, it is possible to have
a directory “+ft_internal” at multiple locations, and they will all be part of the ft_internal package.

If packages are at first only going to be used for the organization of the internal functions, and the
public APIs will remain packageless, it might not be worth it to have an extra layer of packaging /
directories called “+ft_internal”, like in “fieldtrip/specest/+ft_internal/+specest/ETC”. Instead it
could be considered to not have a shared ft_internal package, but multiple packages that start with

25

the same name, and thus have single package directory layer per module, like
“fieldtrip/specest/+ft_internal_specest/ETC”.

26

9. Appendix: Code examples for reimplementation of preamble / postamble
These are meant as example, the actual implementation may have to look somewhat different

9.1. Current analysis function
An example of what the current implementation looks like

function [outputs] = ft_important_analysis_current(cfg, inputs)

% The current implementation
% Based mainly on ft_componentanalysis

% these are used by the ft_preamble/ft_postamble function and
scripts
ft_revision = 'Id';
ft_nargin = nargin;
ft_nargout = nargout;

% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble randomseed

% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
 return
end

% then
% here
% do
% the
% actual
% analysis
comp = 1;

% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble randomseed
ft_postamble previous data
ft_postamble provenance comp
ft_postamble history comp
ft_postamble savevar comp

% and sometimes a small code piece after the postamble

end

9.2. Analysis function with preamble and postamble v2
What the analysis function would look like with the v2 of preamble / postamlbe

function [outputs] = ft_important_analysis_final(cfg, inputs)

% The final implementation
% Based mainly on ft_componentanalysis

% do the general setup of the function (no separate ft_nargin etc
% variables)

27

[cfg, p_amble, data] = ft_preamble_v2(cfg, ...
 {'init', nargin, nargout}, ...
 'debug', ...
 {'loadvar', 'data'}, ...
 {'provenance', 'data'}, ...
 'randomseed');
% Note that for loadvar and provenance, the name given as extra
input will
% not be used to name variables. The input is meant to indicate the
number
% of arguments, and whether they are a cell array or separate
variables.
if p_amble.ft_abort
 return
end

% then
% here
% do
% the
% actual
% analysis
comp = 1;

% do the general cleanup and bookkeeping at the end of the function
[cfg, comp] = ft_postamble_v2(cfg, ...
 {'inputs', data, comp}, ...
 'debug', ...
 'randomseed', ...
 {'previous', 1}, ...
 {'provenance', 2}, ...
 {'history', 2}, ...
 {'savevar', 2});
% Note that the number input to previous, provenance, history and
savevar
% indicates which of the inputs are input for that part. Instead of
a
% scalar, this can also be a vector of numbers.
% The number input would be a required input, and have a scalar 0 to
% indicate no input data used. It can be followed by an optional
input
% string / chararray 'vararg' to indicate that the input is a cell
array.

% and sometimes a small code piece after the postamble

end

9.3. Preamble v2
Some details of v2 of preamble and underlying functions

function [cfg, p_amble, varargout] = ft_preamble_v2(cfg, varargin)
% NOT an actual implementation of ft_preamble_v2
% Just shows possible function signatures of ft_preamble_v2 and the
% underlying functions.

[cfg, p_amble] = ft_preamble_init(cfg, nr_argin, nr_argout);

[cfg, p_amble] = ft_preamble_debug(cfg, p_amble);

[cfg, p_amble, varargout] = ft_preamble_loadvar(cfg, p_amble,
load_args);

28

[cfg, p_amble] = ft_preamble_provenance(cfg, p_amble, prov_args);

[cfg, p_amble] = ft_preamble_randomseed(cfg, p_amble);

end

29

10. Appendix: Code Analyzer app results
Showing only the errors here

30

11. Appendix: Memory profiling examples

11.1. Example of single call memory report

In timelockanalysis, there is the following line
 datacov = ft_checkdata(datacov, 'datatype', 'timelock');
From a specific run that calls timelockanalysis once, the memory profiling shows the following:

And going to the line mentioned

Using the matlab debugger, it is possible to stop at that line, and check the size of the datacov
variable before and after the line is executed.
Runnig whos before ft_checkdata is called shows
 Name Size Bytes Class Attributes

 datacov 1x1 337531528 struct
Runnig whos after ft_checkdata is called shows
 Name Size Bytes Class Attributes

 datacov 1x1 545328786 struct
Thus, what we see happening: datacov the variable is reused in this line, however the output is
larger than the input. Thus, new memory needs to be allocated to hold the output, and the old
memory location will no longer be needed. The Allocated Memory is (approximately) equal to the
new size of datacov, and the Freed Memory is (approximately) equal to the old size. The input
memory location is freed, since the reference to that data is not used anymore.

11.2. Example of multi call memory report

In ft_freqanalysis, ft_specest_mtmconvol is called in a loop. Within ft_specest_mtmconvol, there is
another loop.
In this example, ft_freqanalysis calls ft_specest_mtmconvol 77 times.

Then within ft_specest_mtmconvol there is a loop that is run with 15 iterations (on average, each
call to ft_specest_mtmconvol does not necessarily run the inside loop with the same number of
iterations) leading to the lines within that loop being called 77*15 = 1155 times.

31

From the above timing profiling, we also see that about 50% of the total runtime of the freqanalysis
call (2.6 of 4.9 seconds), appears to be spent on line 356 within ft_specest_mtmconvol. Below the
relevant part of the code is shown:

The code online 356 is doing multiple things: calling two functions and creating some new data on
the fly with an additional function call, all-in one line. Doing multiple things in one line can
sometimes use less memory, but it can also use more memory than dividing the actions over
multiple lines. Thus, this is a good occasion to enable memory profiling.

When we enable memory profiling, the Allocated Memory and Freed Memory columns show that,
over the total of 1155 calls, more than 2 Gb is allocated and freed on this line, so on average 2Mb
per call. This is of the same order of magnitude as the peak memory of 4Mb, so it may be that each
iteration of the inner loop is allocating and freeing memory. This warrants a better look at the code,
whether it is possible to improve it such that the iterations of the inner loop are able to reuse the
memory location.

32

In this case, it is indeed possible to reduce the amount of memory allocation and freeing, by
preusing the ‘dum’ variable that is already present, and splitting the line so the matlab interpreter is
able to determine that the same variable is both input and output to the nested fftshift and ifft calls.

Note that dum will be created 77 times, for each call to ft_specest_mtmconvol. This does match the
Allocated Memory of 77*2Mb approx 160Mb. And note that the Freed Memory over the now two
lines is nearly 0 compared to the earlier 2Gb. Thus in this case indeed, within each call to
ft_specest_mtmconvol, the memory allocated to dum is reused in each loop iteration. This is
possible, because the size of dum does not change from the functions applied to it. Both the data
put into it in the first line and the fftshift and ifft calls in the second line, all produce output that is
the same size. And the fft functions have apparantly been implemented by Matlab to efficiently use
the already allocated memory when possible.

33

12. Appendix: Results of checkCode complexity report
The following snippet can be used to get the complexity of all m files in a directory

a = dir("*.m");
b = {a.name};
c = cell(size(b));
for i = 1:length(b)
 info = checkcode(b{i}, '-modcyc');
 c{i} = info(1).message;
end
for i = 1:length(c)
 disp(c{i})
end

Applied to the main fieldtrip directory, the results are

The modified cyclomatic complexity is 0.
The modified cyclomatic complexity of 'besa2fieldtrip' is 51.
The modified cyclomatic complexity of 'bis2fieldtrip' is 1.
The modified cyclomatic complexity of 'data2bids' is 287.
The modified cyclomatic complexity of 'edf2fieldtrip' is 6.
The modified cyclomatic complexity of 'fieldtrip2besa' is 13.
The modified cyclomatic complexity of 'fieldtrip2bis' is 1.
The modified cyclomatic complexity of 'fieldtrip2ctf' is 4.
The modified cyclomatic complexity of 'fieldtrip2fiff' is 17.
The modified cyclomatic complexity of 'fieldtrip2homer' is 6.
The modified cyclomatic complexity of 'fieldtrip2spss' is 2.
The modified cyclomatic complexity of 'ft_analysispipeline' is 21.
The modified cyclomatic complexity of 'ft_annotate' is 2.
The modified cyclomatic complexity of 'ft_anonymizedata' is 12.
The modified cyclomatic complexity of 'ft_appenddata' is 52.
The modified cyclomatic complexity of 'ft_appendfreq' is 22.
The modified cyclomatic complexity of 'ft_appendlayout' is 28.
The modified cyclomatic complexity of 'ft_appendsens' is 58.
The modified cyclomatic complexity of 'ft_appendsource' is 75.
The modified cyclomatic complexity of 'ft_appendspike' is 23.
The modified cyclomatic complexity of 'ft_appendtimelock' is 22.
The modified cyclomatic complexity of 'ft_artifact_clip' is 27.
The modified cyclomatic complexity of 'ft_artifact_ecg' is 39.
The modified cyclomatic complexity of 'ft_artifact_eog' is 5.
The modified cyclomatic complexity of 'ft_artifact_jump' is 5.
The modified cyclomatic complexity of 'ft_artifact_muscle' is 5.
The modified cyclomatic complexity of 'ft_artifact_nan' is 16.
The modified cyclomatic complexity of 'ft_artifact_threshold' is 41.
The modified cyclomatic complexity of 'ft_artifact_tms' is 16.
The modified cyclomatic complexity of 'ft_artifact_zvalue' is 53.
The modified cyclomatic complexity of 'ft_audiovideobrowser' is 38.
The modified cyclomatic complexity of 'ft_badchannel' is 17.
The modified cyclomatic complexity of 'ft_badsegment' is 17.
The modified cyclomatic complexity of 'ft_channelnormalise' is 13.
The modified cyclomatic complexity of 'ft_channelrepair' is 59.
The modified cyclomatic complexity of 'ft_clusterplot' is 67.
The modified cyclomatic complexity of 'ft_combineplanar' is 37.

34

The modified cyclomatic complexity of 'ft_componentanalysis' is 120.
The modified cyclomatic complexity of 'ft_conjunctionanalysis' is 39.
The modified cyclomatic complexity of 'ft_connectivityanalysis' is 266.
The modified cyclomatic complexity of 'ft_connectivityplot' is 72.
The modified cyclomatic complexity of 'ft_connectivitysimulation' is 38.
The modified cyclomatic complexity of 'ft_crossfrequencyanalysis' is 33.
The modified cyclomatic complexity of 'ft_databrowser' is 98.
The modified cyclomatic complexity of 'ft_defacemesh' is 2.
The modified cyclomatic complexity of 'ft_defacevolume' is 34.
The modified cyclomatic complexity of 'ft_defaults' is 99.
The modified cyclomatic complexity of 'ft_definetrial' is 25.
The modified cyclomatic complexity of 'ft_denoise_dssp' is 8.
The modified cyclomatic complexity of 'ft_denoise_hfc' is 11.
The modified cyclomatic complexity of 'ft_denoise_pca' is 28.
The modified cyclomatic complexity of 'ft_denoise_prewhiten' is 20.
The modified cyclomatic complexity of 'ft_denoise_ssp' is 16.
The modified cyclomatic complexity of 'ft_denoise_synthetic' is 13.
The modified cyclomatic complexity of 'ft_denoise_tsr' is 17.
The modified cyclomatic complexity of 'ft_detect_movement' is 13.
The modified cyclomatic complexity of 'ft_dipolefitting' is 92.
The modified cyclomatic complexity of 'ft_dipolesimulation' is 27.
The modified cyclomatic complexity of 'ft_electrodeplacement' is 47.
The modified cyclomatic complexity of 'ft_electroderealign' is 92.
The modified cyclomatic complexity of 'ft_electrodermalactivity' is 5.
The modified cyclomatic complexity of 'ft_eventtiminganalysis' is 36.
The modified cyclomatic complexity of 'ft_examplefunction' is 2.
The modified cyclomatic complexity of 'ft_freqanalysis' is 166.
The modified cyclomatic complexity of 'ft_freqanalysis_mvar' is 29.
The modified cyclomatic complexity of 'ft_freqbaseline' is 21.
The modified cyclomatic complexity of 'ft_freqdescriptives' is 28.
The modified cyclomatic complexity of 'ft_freqgrandaverage' is 37.
The modified cyclomatic complexity of 'ft_freqinterpolate' is 6.
The modified cyclomatic complexity of 'ft_freqsimulation' is 127.
The modified cyclomatic complexity of 'ft_freqstatistics' is 19.
The modified cyclomatic complexity of 'ft_globalmeanfield' is 3.
The modified cyclomatic complexity of 'ft_headmovement' is 30.
The modified cyclomatic complexity of 'ft_heartrate' is 28.
The modified cyclomatic complexity of 'ft_interactiverealign' is 45.
The modified cyclomatic complexity of 'ft_interpolatenan' is 10.
The modified cyclomatic complexity of 'ft_lateralizedpotential' is 12.
The modified cyclomatic complexity of 'ft_layoutplot' is 21.
The modified cyclomatic complexity of 'ft_math' is 71.
The modified cyclomatic complexity of 'ft_megplanar' is 22.
The modified cyclomatic complexity of 'ft_megrealign' is 26.
The modified cyclomatic complexity of 'ft_meshrealign' is 17.
The modified cyclomatic complexity of 'ft_movieplotER' is 10.
The modified cyclomatic complexity of 'ft_movieplotTFR' is 51.
The modified cyclomatic complexity of 'ft_multiplotCC' is 20.
The modified cyclomatic complexity of 'ft_multiplotER' is 91.
The modified cyclomatic complexity of 'ft_multiplotTFR' is 83.
The modified cyclomatic complexity of 'ft_mvaranalysis' is 86.

35

The modified cyclomatic complexity of 'ft_neighbourplot' is 26.
The modified cyclomatic complexity of 'ft_networkanalysis' is 59.
The modified cyclomatic complexity of 'ft_prepare_headmodel' is 68.
The modified cyclomatic complexity of 'ft_prepare_layout' is 213.
The modified cyclomatic complexity of 'ft_prepare_leadfield' is 36.
The modified cyclomatic complexity of 'ft_prepare_mesh' is 23.
The modified cyclomatic complexity of 'ft_prepare_montage' is 22.
The modified cyclomatic complexity of 'ft_prepare_neighbours' is 68.
The modified cyclomatic complexity of 'ft_prepare_sourcemodel' is 122.
The modified cyclomatic complexity of 'ft_preprocessing' is 98.
The modified cyclomatic complexity of 'ft_recodeevent' is 26.
The modified cyclomatic complexity of 'ft_redefinetrial' is 63.
The modified cyclomatic complexity of 'ft_regressconfound' is 26.
The modified cyclomatic complexity of 'ft_rejectartifact' is 102.
The modified cyclomatic complexity of 'ft_rejectcomponent' is 27.
The modified cyclomatic complexity of 'ft_rejectvisual' is 37.
The modified cyclomatic complexity of 'ft_removetemplateartifact' is 8.
The modified cyclomatic complexity of 'ft_reproducescript' is 3.
The modified cyclomatic complexity of 'ft_resampledata' is 51.
The modified cyclomatic complexity of 'ft_respiration' is 16.
The modified cyclomatic complexity of 'ft_scalpcurrentdensity' is 22.
The modified cyclomatic complexity of 'ft_singleplotER' is 84.
The modified cyclomatic complexity of 'ft_singleplotTFR' is 65.
The modified cyclomatic complexity of 'ft_sliceinterp' is 80.
The modified cyclomatic complexity of 'ft_sourceanalysis' is 218.
The modified cyclomatic complexity of 'ft_sourcedescriptives' is 306.
The modified cyclomatic complexity of 'ft_sourcegrandaverage' is 26.
The modified cyclomatic complexity of 'ft_sourceinterpolate' is 96.
The modified cyclomatic complexity of 'ft_sourcemovie' is 34.
The modified cyclomatic complexity of 'ft_sourceparcellate' is 36.
The modified cyclomatic complexity of 'ft_sourceplot' is 267.
The modified cyclomatic complexity of 'ft_sourceplot_interactive' is 22.
The modified cyclomatic complexity of 'ft_sourcestatistics' is 22.
The modified cyclomatic complexity of 'ft_sourcewrite' is 17.
The modified cyclomatic complexity of 'ft_statistics_analytic' is 5.
The modified cyclomatic complexity of 'ft_statistics_crossvalidate' is 15.
The modified cyclomatic complexity of 'ft_statistics_montecarlo' is 78.
The modified cyclomatic complexity of 'ft_statistics_mvpa' is 87.
The modified cyclomatic complexity of 'ft_statistics_stats' is 35.
The modified cyclomatic complexity of 'ft_steadystatesimulation' is 26.
The modified cyclomatic complexity of 'ft_stratify' is 95.
The modified cyclomatic complexity of 'ft_timelockanalysis' is 29.
The modified cyclomatic complexity of 'ft_timelockbaseline' is 35.
The modified cyclomatic complexity of 'ft_timelockgrandaverage' is 27.
The modified cyclomatic complexity of 'ft_timelocksimulation' is 18.
The modified cyclomatic complexity of 'ft_timelockstatistics' is 27.
The modified cyclomatic complexity of 'ft_topoplotCC' is 39.
The modified cyclomatic complexity of 'ft_topoplotER' is 8.
The modified cyclomatic complexity of 'ft_topoplotIC' is 16.
The modified cyclomatic complexity of 'ft_topoplotTFR' is 8.
The modified cyclomatic complexity of 'ft_virtualchannel' is 51.

36

The modified cyclomatic complexity of 'ft_volumebiascorrect' is 14.
The modified cyclomatic complexity of 'ft_volumedownsample' is 14.
The modified cyclomatic complexity of 'ft_volumelookup' is 77.
The modified cyclomatic complexity of 'ft_volumenormalise' is 51.
The modified cyclomatic complexity of 'ft_volumerealign' is 105.
The modified cyclomatic complexity of 'ft_volumereslice' is 15.
The modified cyclomatic complexity of 'ft_volumesegment' is 100.
The modified cyclomatic complexity of 'ft_volumewrite' is 40.
Function return value might be unset.
The modified cyclomatic complexity of 'homer2fieldtrip' is 20.
The modified cyclomatic complexity of 'imotions2fieldtrip' is 32.
The modified cyclomatic complexity of 'loreta2fieldtrip' is 14.
The modified cyclomatic complexity of 'nutmeg2fieldtrip' is 56.
The modified cyclomatic complexity of 'spass2fieldtrip' is 15.
The modified cyclomatic complexity of 'spm2fieldtrip' is 4.
The modified cyclomatic complexity of 'xdf2fieldtrip' is 38.

