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Evoked activity
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Evoked activity
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Induced activity
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M/EEG signal characteristics considered during analysis

timecourse of activity
-> ERP

spectral characteristics
-> power spectrum

temporal changes in power
-> time-frequency response (TFR)

spatial distribution of activity over the head
-> source reconstruction



Superposition of source activity
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Separating activity of different sources (and noise)

Use the temporal aspects of the data
at the channel level
ERF latencies
ERF difference waves
Filtering the time-series
Spectral decomposition

Use the spatial aspects of the data

Volume conduction model of head
Estimate source model parameters
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Brain signals contain oscillatory activity
at multiple frequencies
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Outline

Spectral analysis: going from time to frequency domain

Issues with finite and discrete sampling

Spectral leakage and (multi-)tapering

Time-frequency analysis

http://www.fieldtriptoolbox.org



A background note on oscillations
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Spectral analysis

Deconstructing a time domain signal into its constituent
oscillatory components, a.k.a. Fourier analysis

Using simple oscillatory functions: cosines and sines
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Spectral decomposition: the power spectrum
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Spectral analysis

Deconstructing a time domain signal into its constituent
oscillatory components, a.k.a. Fourier analysis

Using simple oscillatory functions: cosines and sines
Express signal as function of frequency, rather than time
Concept: linear regression using oscillatory basis functions
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Spectral analysis ~ GLM

Y=pPxX
X set of basis functions
B; contribution of basis function i to the data.

[ for cosine and sine components for a given frequency
map onto amplitude and phase estimate.

Restriction: basis functions should be ‘orthogonal’

Consequence 1: frequencies not arbitrary
-> integer amount of cycles should fit into N points.

Consequence 2: N-point signal
-> N basis functions

http://www.fieldtriptoolbox.org
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Time-frequency relation

Consequence 1: frequencies not arbitrary
-> integer amount of cycles should fit into N samples of At each.

The frequency resolution is determined by the total length of
the data segments (T)

Rayleigh frequency = 1/T = Af = frequency resolution

Time window: > Frequencies:
1ls (0)123456..Hz

Time window: > Frequencies:
0.2s (0) 510 15 20 .. Hz
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Time-frequency relation

Consequence 2: N-point signal
-> N basis functions

N basis functions -> N/2 frequencies

The highest frequency that can be resolved depends
on the sampling frequency F

Nyquist frequency = F/2

Sampling freq 1 kHz jl> Frequencies:
Time window 1 s (0)12...499 500 Hz

Sampling freq 400 Hz ﬂ Frequencies:
Time window 0.25 s (0) 4 8... 196 200 Hz




Spectral analysis

Deconstructing a time domain signal into its constituent
oscillatory components, a.k.a. Fourier analysis

Using simple oscillatory functions: cosines and sines
Express signal as function of frequency, rather than time
Concept: linear regression using oscillatory basis functions
Each oscillatory component has an amplitude and phase
Discrete and finite sampling constrains the frequency axis
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Goal and challenges
e Estimate the true oscillations from the observed data

e Limited time available for Fourier transform

* You are looking at the activity thro 4@ {
y @ time restricted window 7
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Spectral leakage and tapering

e True oscillations in data at frequencies not sampled with
Fourier transform spread their energy to the sampled
frequencies

e Not tapering is equal to applying a “boxcar” taper
e Each type of taper has a specific leakage profile
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Spectral leakage
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main lobe sidelobes




Tapering in spectral analysis
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Tapering in spectral analysis
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Tapering in spectral analysis
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Spectral leakage and tapering

e True oscillations in data at frequencies not sampled with
Fourier transform spread their energy to the sampled
frequencies

e Not tapering is equal to applying a boxcar taper
e Each type of taper has a specific leakage profile
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Multitapers

Make use of more than one taper and combine
their properties

Used for smoothing in the frequency domain

Instead of “smoothing” one can also say “controlled leakage”
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Multitapered spectral analysis
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Multitapered spectral analysis
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Multitapers

Multitapers are useful for reliable estimation of high
frequency components

Low frequency components are better estimated using a
single (Hanning) taper

%estimate low frequencies %estimate high frequencies
cftg = [1; cfg = [1;

cfg.method = ‘mtmfft’; cfg.method = ‘mtmfft’;
cfg.foilim = [1 30]; cfg.foilim = [30 120];
cfg.taper = ‘hanning ; cfg.taper = ‘dpss’ ;

cfg.tapsmofrg = 8;

freq=ft fregqanalysis(cfg, data);|| freq=ft freqanalysis(cfg, data);
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Interim summary

Spectral analysis

Decompose signal into its constituent
oscillatory components

Focused on ‘stationary’ power

Tapers
Boxcar, Hanning, Gaussian

Multitapers
Control spectral leakage/smoothing
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Time-frequency analysis

Typically, brain signals are not ‘stationary’

e Divide the measured signal in shorter time segments
and apply Fourier analysis to each signal segment

e Everything we saw so far with respect to frequency
resolution applies here as well

ctg = T[1; , :
cfg.method = | mtmconvol ;

freq = ft freqanalysis(cfg, data);
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Time frequency analysis

Time (s)
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Time frequency analysis

Time (s)

14d

I high

Frequency (Hz)
r

FOWE
o

Time (s)

http://www.fieldtriptoolbox.org



Time frequency analysis

Time (s)

14d

I high

Frequency (Hz)
r

FOWE
o

Time (s)

http://www.fieldtriptoolbox.org



Time frequency analysis

Time (s)

14d

l high

Frequency (Hz)

FOWEI‘
o

Time (s)

http://www.fieldtriptoolbox.org



Time frequency analysis
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Time frequency analysis
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Time frequency analysis
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Evoked versus induced activity







The time-frequency plane
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freq = ft freqanalysis(cfg,data);
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The time-frequency plane

« o o 1 ’
The division is "up to you >
Depends on the phenomenon 5
. ] O-
you want to investigate: 2
- Which frequency band? AF
L AT
- Which time scale?
time
cfg = [1;
cfg.method = ‘mtmconvol’ ;
cfg.foi [2 4 .. 40];
cfg.toi [0:0.050:1.0];

cfg.t ftimwin
cfg.tapsmofrqg

[0.5 0.5 ... 0.5];
[ 4 4 .. 4 ];

freq = ft freqanalysis(cfg,data);
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frequency(Hz)
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Time versus frequency resolution
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Interim summary

Time frequency analysis
Fourier analysis on shorter sliding time window

Evoked & Induced activity
Time frequency resolution trade off
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Wavelet analysis

Popular method to calculate time-frequency
representations

Is based on convolution of signal with a family of
‘wavelets’ which capture different frequency
components in the signal

Convolution ~ local correlation

http://www.fieldtriptoolbox.org



Wavelet analysis
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cfg = [1; : :
cfg.method = wavelet ;

freq=ft freqanalysis(cfg, data);




Wavelets
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Wavelet analysis

Wavelet width determines the
time-frequency resolution

Width is a function of frequency
(often 5 cycles)

‘Long’ wavelet at low frequencies
leads to relatively narrow
frequency resolution but poor
temporal resolution

‘Short’ wavelet at high frequencies

leads to broad frequency
resolution but more accurate

temporal resolution

http://www.fieldtriptoolbox.org
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Wavelet analysis

Similar to Fourier analysis, but
Can be computationally slower

Tiles the time frequency plane in a particular way
with fewer degrees of freedom

$time frequency analysis with
smultitapers

cftg = 1[1;

cfg.method = ‘mtmconvol’ ;
cfg.toi [0:0.05:1];
cfg.foi = [ 4 8 801;
cfg.t ftimwin = [0.5 0.5 .. 0.5];
cfg.tapsmofrqg = [ 2 2 107];

fregq=ft freqanalysis(cfg, data);

$time frequency analysis with
gwavelets

cftg = [1;

cfg.method = ‘wavelet’ ;
cfg.toi = [0:0.05:17;
cfg.foi = [4 8 .. 80];
cfg.width = 5;

freq=ft freqanalysis(cfg, data);
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Summary

Spectral analysis
Relation between time and frequency domains
Tapers

Time frequency analysis

Time vs frequency resolution

Wavelets
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Hands-on

Go to
http://www.fieldtriptoolbox.org/workshop/marseille

and then
http://www.fieldtriptoolbox.org/tutorial/sensor analysis

This will cover
ERFs following visual stimulus onset
oscillatory activity following visual stimulation
coherence between the cortex and the muscle
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