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Motivation 1 

Strong points of EEG and MEG 
Temporal resolution (~1 ms) 
Characterize individual components of ERP 
Oscillatory activity 
Disentangle dynamics of cortical networks 
 

Weak points of EEG and MEG 
Measurement on outside of brain 
Overlap of components 
Low spatial resolution 
 



Motivation 2 

If you find a ERP/ERF component, you want to 
characterize it in physiological terms 
Time or frequency are the “natural” characteristics 
“Location” requires interpretation of the scalp 

topography 
 
Forward and inverse modeling helps to interpret 

the topography 
 
Forward and inverse modeling helps to 

disentangle overlapping source timeseries 
 



Superposition of source activity 



Biophysical source modelling: overview 

inverse model 

forward model 

physiological source 
electrical current 

observed 
potential or field 

body tissue 
volume conductor 
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What produces the electric current 



Equivalent current dipoles 
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Volume conductor 

described electrical 
properties of tissue 
 
describes geometrical  
model of the head 
 
describes how the currents 
flow, not where they 
originate from 
 
same volume conductor for 
EEG as for MEG, but also  
for tDCS, tACS, TMS, … 
 



Volume conductor 

Computational methods for volume conduction  
problem that allow for realistic geometries 
 
BEM  Boundary Element Method 
 
FEM  Finite Element Method 
 
FDM  Finite Difference Method 
 

 



Volume conductor: Boundary Element Method 

Each compartment is 
homogenous 
isotropic 
 

Important tissues 
skin 
skull 
brain 
(CSF) 
 

Triangulated surfaces 
describe boundaries 



Volume conductor: Boundary Element Method 

Construction of geometry 
segmentation in different tissue types 
extract surface description 
downsample to reasonable number of triangles 



Volume conductor: Boundary Element Method 

Construction of geometry 
segmentation in different tissue types 
extract surface description 
downsample to reasonable number of triangles 

Computation of model 
independent of source model 
only one lengthy computation 
fast during application to real data 

Can also include more complex geometrical details 
ventricles 
holes in skull 



Volume conductor: Finite Element Method 

Tesselation of 3D volume in  
tetraeders or hexaheders 

 
 
 
 



Volume conductor: Finite Element Method 

tetraeders  hexaheders 



Volume conductor: Finite Element Method 

Tesselation of 3D volume in  
tetraeders or hexaheders 

 
 
 
 
Each element can have its own conductivity 
 
FEM is the most accurate numerical method but 

computationally quite expensive 
 

Geometrical processing not as simple as BEM 



Volume conductor: Finite Difference Method 

Easy to compute 
Not very usefull in practice 



Volume conductor: Finite Difference Method 

(V1-V0)/R1 + (V2-V0)/R2 + (V3-V0)/R3 + (V4-V0)/R4 = 0 

I1 + I2 + I3 + I4 = 0 
V = I*R 

ΔV1/R1 + ΔV2 /R2 + ΔV3 /R3 + ΔV4 /R4 = 0 



Volume conductor: Finite Difference Method 

Unknown potential Vi at each node 
Linear equation for each node 

approx. 100x100x100 = 1.000.000 linear equations 
just as many unknown potentials 
 

Add a source/sink 
sum of currents is zero for all nodes, except 
sum of current is I+  for a certain node 
sum of current is I-  for another node 
 

Solve for unknown potential 
 



EEG volume conduction 



EEG volume conduction 

Potential difference between electrodes 
corresponds to current flowing through skin 

 
Only tiny fraction of current passes through skull 
 
Therefore the model should describe the skull and  

skin as accurately as possible 
 



MEG volume conduction 

MEG measures magnetic field over the scalp 
 
Magnetic field itself is not distorted by skull 
 
Magnetic field from ECDs but also from the 

volume currents 
 
Only tiny fraction of current passes through skull, 

therefore the model can ignore the skull and 
skin 

 



MEG volume conduction compared to EEG 

EEG is measurement on scalp 
 potential difference due to volume currents 

 
MEG field not affected by head 

  - magnetic field due to  
    primary current (source) 
  - magnetic field due to  
    secondary (volume) currents 
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Biophysical source modelling: overview 

inverse model 

forward model 

physiological source 
electrical current 

observed 
potential or field 

body tissue 
volume conductor 



Inverse localization: demo 





Inverse methods 

Single and multiple dipole models 
Minimize error between model and measured potential/field 

 
Distributed source models 

Perfect fit of model to the measured potential/field 
Additional constraint on source smoothness, power or amplitude 

 
Spatial filtering 

Scan the whole brain with a single dipole and compute the filter output 
at every location 

Beamforming (e.g. LCMV, SAM, DICS) 
Multiple Signal Classification (MUSIC) 
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Single or multiple dipole models - Parameter estimation 
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Parameter estimation: dipole parameters 

y = f(x;a,b) 
  = a*x + b 

source model with  
few parameters 

position 
orientation  
strength 
 

compute the model 
data 
 
minimize difference 
between actual and 
model data 



Linear parameters: superposition of sources 

three sources with parameters ζ1, ζ2 and ζ3 
 

Y (ζ2 )

Y (ζ1)

Y (ζ3)

Ycombined =Y (ζ1)+Y (ζ2 )+Y (ζ3)



Linear parameters: estimation 
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Non-linear parameters 
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Non-linear parameters: grid search 

One dimension, e.g. location along medial-lateral 
100 possible locations 

Two dimensions, e.g. med-lat + inf-sup 
100x100=10.000 

Three dimensions 
100x100x100 = 1.000.000 = 106 
 

Two dipoles, each with three dimensions 
100x100x100x100x100x100 = 1012 



Non-linear parameters: gradient descent optimization 
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Single or multiple dipole models - Strategies 

Single dipole: 
 scan the whole brain, followed by iterative 
optimization 

Two dipoles: 
 scan with symmetric pair, use that as starting 
point for iterative optimization 

More dipoles: 
 sequential dipole fitting 



Sequential dipole fitting 

BESA manual 



Sequential dipole fitting 

BESA manual 



Sequential dipole fitting 

BESA manual 



Sequential dipole fitting 

BESA manual 



Spread of cortical activity 

Assume that activity starts “small” 
explain earliest ERP component with single equivalent 

current dipole  
Assume later activity to be more widespread 

add ECDs to explain later ERP components 
estimate position of new dipoles 
re-estimate the activity of all dipoles 
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Distributed source model 

Position of the source is not estimated as such 
Pre-defined grid (3D volume or on cortical sheet)  

Strength is estimated 
In principle easy to solve, however… 
More “unknowns” (parameters) than 

“knowns” (measurements) 
Infinite number of solutions can explain the data 

perfectly 
Additional constraints required 
Linear estimation problem 
 



Distributed source model 



Distributed source model 
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Distributed source model: linear estimation 



Distributed source model: linear estimation 

distributed source model 
with many dipoles 
throughout the whole 
brain 
 
estimate the strength of 
all dipoles 
 
data and noise can be 
perfectly explained 

y = f(x;a1,a2...aN) 



V =G ⋅q+ Noise

minq{||V −G ⋅q ||
2} = 0 !!

Distributed source model: regularization 

→minq{||V −G ⋅q ||
2 +λ⋅ ||D ⋅q ||2}

Regularized linear estimation: 

mismatch with data mismatch with prior  
assumptions 
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Spatial filtering with beamforming 

Position of the source is not estimated as such 
Manipulate filter properties, not source properties 

No explicit assumptions about source constraints  
(implicit: single dipole) 

Assumption that sources that contribute to the data 
should be uncorrelated 



Beamformer: the question 

What is the activity of a source q, at a location r, 
given the data y? 

We estimate q with a spatial filter w 

h1 
h2 

h3 
h4 

h5 

qr(t) 

y1(t) 
y2(t) 

y3(t) 

y4(t) 

y5(t) 

w1(r) 
w2(r) 

w3(r) 

w4(r) 

w5(r) 
qr (t) = w(r)T y(t)  ̂
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Estimating source timecourse activity 
 

Y	=	G1X1	+	G2X2	+	...	+	GnXn	+	noise	



Estimating source timecourse activity  
using dipole fitting 

Y	=	G1X1	+	G2X2	+	...	+	GnXn	+	noise	

	
	
(Y	-	G1X1	-	G2X2	-	...	-	GnXn)	=	residual	

measured	data	 model	data	

X’	=	W	Y,				where	W	=	GT	(G	GT)-1	

n	is	typically	small	



Estimating source timecourse activity  
using distributed source models 

minX{||Y −G ⋅X ||
2 +λ⋅ || X ||2}

Y	=	G1X1	+	G2X2	+	...	+	GnXn	+	noise	

n	is	typically	large		(>	#	channels)	

Y	=	G	X		+	noise	

X’	=	W	Y,			where	W	ensures	

Y	=	(G1X1	+	G2X2	+	...	+	GnXn)	+	noise	



Y	=	G1X1	+	(G2X2	+	...	+	GnXn	+	noise)	
	
Y	=	G1X1	+	N	
	
N	=	all	acAvity	not	coming	from	1,		
assume	that	N	is	uncorrelated	with	X1	

Estimating source timecourse activity  
using spatial filtering 

Y	=	(G1X1)	+	G2X2	+	(...	+	GnXn	+	noise)	
	
Y	=	G2X2	+	N	
	
N	=	all	acAvity	not	coming	from	2,		
assume	that	N	is	uncorrelated	with	X2	

Y	=	(G1X1	+	G2X2+	...)	+	GnXn	+	(noise)	
	
Y	=	GnXn	+	N	
	
N	=	all	acAvity	not	coming	from	n,		
assume	that	N	is	uncorrelated	with	Xn	

X’n		=	Wn	Y,			where			WT	=	[Gn
T	CY

-1	Gn]
-1	Gn

T	CY
-1		

Y	=	G1X1	+	G2X2	+	...	+	GnXn	+	noise	

any	number	of	n	



Estimating source timecourse activity  
 

Y	=	G1X1	+	G2X2	+	...	+	GnXn	+	noise	

X’	=	W	Y	X’(t)	=	W	Y(t)	
distributed	sources	

minimum	norm	esAmate	

few	sources	

dipole	fiLng	
one	at	a	Ame	

beamforming	



Independent component analysis 

   Cocktail Party 

Mixture of Brain source activity 
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Estimating source timecourse activity  
using independent component analysis 

Y	=	G1X1	+	G2X2	+	...	+	GnXn	+	noise	

n	typically	the	same	as	the	number	of	channels	

X’	=	W	Y,			where	W	maximizes	the	independence	of	X’	

Y	=	G	(X		+	noise)	

includes	line-noise,	EOG,	ECG	and	other		
noise	that	is	visible	on	all	channels	

rows	of	W-1	correspond	to	G1,	G2,	…		



Estimating source timecourse activity  
 

Y	=	G1X1	+	G2X2	+	...	+	GnXn	+	noise	

X’	=	W	M	X’(t)	=	W	Y(t)	distributed	sources	

minimum	norm	esAmate	

few	sources	

dipole	fiLng	

one	at	a	Ame	

beamforming	

independent	component	analysis	

all	brain	(and	arAfact)	sources	



Source modelling of independent components 

Components have (maximal) independent 
timecourses 

Unmixing of timeseries has already been taken 
care of 

Assumption: components correspond to compact 
spatial patches (or bilateral patches) 

Use simple biophysical dipole models to model the 
spatial component topographies 

It can be challenging to match ICA sources over 
subjects 
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Summary 1 

Forward modelling 
Required for the interpretation of scalp topographies 
Different methods with varying accuracy 

Inverse modelling 
Estimate source location and timecourse from data 

Assumptions on source locations 
Single or multiple point-like source 
Distributed source 

Assumptions on source timecourse 
Uncorrelated (and dipolar) 
Independent 
 

 



Summary 2 

Independent component analysis 
separates topography and timecourse 
no biophysical assumptions (yet) 

Inverse methods to interpret topography 
Single or multiple point-like source 
Distributed source 
 

 
 



Summary 3 

Source analysis is not only about the “where”  
but also about untangling the “what” and 
“when” 

 

timecourse of activity  
-> ERP 

 
spectral characteristics  

-> power spectrum 
 
temporal changes in power  

-> time-frequency response (TFR) 
 
 
spatial distribution of activity over the head  

-> source reconstruction 





Independent components are dipolar 

Delorme et al. Independent EEG sources are dipolar. PLoS One. 2012. 



Independent components are dipolar 

Delorme et al. Independent EEG sources are dipolar. PLoS One. 2012. 


