

Radboud University

Forward and Inverse Modeling of EEG and MEG data

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL NatMEG, Karolinska Institute, Stockholm, SE

Overview

Motivation and background Forward modeling Source model Volume conductor model Inverse modeling - biophysical models Single and multiple dipole fitting Distributed source models Beamforming methods Inverse modeling - independent components Summary

Overview

Motivation and background

Forward modeling

- Source model
- Volume conductor model

Inverse modeling - biophysical models

- Single and multiple dipole fitting
- Distributed source models
- Beamforming methods

Inverse modeling - independent components

Summary

Motivation 1

Strong points of EEG and MEG

Temporal resolution (~1 ms) Characterize individual components of ERP Oscillatory activity Disentangle dynamics of cortical networks

Weak points of EEG and MEG Measurement on outside of brain Overlap of components Low spatial resolution

Motivation 2

If you find a ERP/ERF component, you want to characterize it in physiological terms Time or frequency are the "natural" characteristics "Location" requires interpretation of the scalp topography

Forward and inverse modeling helps to interpret the topography

Forward and inverse modeling helps to disentangle overlapping source timeseries

Superposition of source activity

Biophysical source modelling: overview

inverse model

Overview

Motivation and background Forward modeling

- Source model
- Volume conductor model

Inverse modeling - biophysical models

- Single and multiple dipole fitting
- Distributed source models
- Beamforming methods
- Inverse modeling independent components

Summary

What produces the electric current

Equivalent current dipoles

Overview

Motivation and background Forward modeling Source model Volume conductor model Inverse modeling - biophysical models Single and multiple dipole fitting Distributed source models Beamforming methods Inverse modeling - independent components Summary

Volume conductor

described electrical properties of tissue

describes geometrical model of the head

describes **how** the currents flow, not where they originate from

same volume conductor for EEG as for MEG, but also for tDCS, tACS, TMS, ...

Volume conductor

Computational methods for volume conduction problem that allow for realistic geometries

- BEM Boundary Element Method
- FEM Finite Element Method
- FDM Finite Difference Method

Volume conductor: Boundary Element Method

Each compartment is homogenous isotropic

Important tissues skin skull brain (CSF)

Triangulated surfaces describe boundaries

Volume conductor: Boundary Element Method

Construction of geometry

segmentation in different tissue types

extract surface description

downsample to reasonable number of triangles

Volume conductor: Boundary Element Method

Construction of geometry segmentation in different tissue types extract surface description downsample to reasonable number of triangles Computation of model independent of source model only one lengthy computation fast during application to real data Can also include more complex geometrical details ventricles holes in skull

Volume conductor: Finite Element Method

Tesselation of 3D volume in tetraeders or hexaheders

Volume conductor: Finite Element Method

tetraeders

hexaheders

Volume conductor: Finite Element Method

Tesselation of 3D volume in tetraeders or hexaheders

Each element can have its own conductivity

FEM is the most accurate numerical method but computationally quite expensive

Geometrical processing not as simple as BEM

Volume conductor: Finite Difference Method

Volume conductor: Finite Difference Method

$$\Delta V_1 / R_1 + \Delta V_2 / R_2 + \Delta V_3 / R_3 + \Delta V_4 / R_4 = 0$$

$$\Delta \mathbf{v}_1 / \mathbf{x}_1 + \Delta \mathbf{v}_2 / \mathbf{x}_2 + \Delta \mathbf{v}_3 / \mathbf{x}_3 + \Delta \mathbf{v}_4 / \mathbf{x}_4 = \mathbf{0} = \mathbf{0}$$

 $(V_1-V_0)/R_1 + (V_2-V_0)/R_2 + (V_3-V_0)/R_3 + (V_4-V_0)/R_4 = 0$

Volume conductor: Finite Difference Method

Unknown potential Vi at each node Linear equation for each node approx. 100x100x100 = 1.000.000 linear equations just as many unknown potentials

Add a source/sink

sum of currents is zero for all nodes, except sum of current is I+ for a certain node sum of current is I- for another node

Solve for unknown potential

EEG volume conduction

EEG volume conduction

Potential difference between electrodes corresponds to current flowing through skin

Only tiny fraction of current passes through skull

Therefore the model should describe the skull and skin as accurately as possible

MEG volume conduction

MEG measures magnetic field over the scalp

MEG volume conduction compared to EEG

EEG is measurement on scalp potential difference due to volume currents

MEG field not affected by head

- magnetic field due to primary current (source)
- magnetic field due to secondary (volume) currents

Overview

Motivation and background

Forward modeling

Source model

Volume conductor model

EEG versus MEG

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary Biophysical source modelling: overview

forward model

Inverse localization: demo

Inverse methods

Single and multiple dipole models

Minimize error between model and measured potential/field

Distributed source models

Perfect fit of model to the measured potential/field Additional constraint on source smoothness, power or amplitude

Spatial filtering

Scan the whole brain with a single dipole and compute the filter output at every locationBeamforming (e.g. LCMV, SAM, DICS)Multiple Signal Classification (MUSIC)

Overview

Motivation and background Forward modeling Source model Volume conductor model Inverse modeling - biophysical models Single and multiple dipole fitting Distributed source models Beamforming methods Inverse modeling - independent components Summary

Single or multiple dipole models - Parameter estimation

Х

Parameter estimation: dipole parameters

source model with few parameters position orientation strength

compute the model data

minimize difference between actual and model data

Linear parameters: superposition of sources

three sources with parameters ζ_1 , ζ_2 and ζ_3

 $Y(\xi_1)$ $Y(\xi_2)$ $Y(\xi_3)$

$$Y_{combined} = Y(\zeta_1) + Y(\zeta_2) + Y(\zeta_3)$$

Linear parameters: estimation

$$Y = G_{x}q_{x} + G_{y}q_{y} + G_{z}q_{z} = \begin{bmatrix} G_{x,1} & G_{y,1} & G_{z,1} \\ G_{x,2} & G_{y,2} & G_{z,2} \\ \vdots & \vdots & \vdots \\ G_{x,N} & G_{y,N} & G_{z,N} \end{bmatrix} \cdot \begin{bmatrix} q_{x} \\ q_{y} \\ q_{z} \end{bmatrix} = \mathbf{G} \cdot \vec{q}$$

 $Y = \mathbf{G} \cdot \vec{q}$ $= \mathbf{G}(\boldsymbol{\zeta}) \cdot \vec{q}$

 $\vec{q} = \mathbf{G}^{-1} \cdot Y$
Non-linear parameters

$$\varepsilon rror(\zeta) = \sum_{i=1}^{N} \left(Y_i(\zeta) - V_i \right)^2 \implies \min_{\zeta} \left(\varepsilon rror(\zeta) \right)$$

$$\zeta = a, b, c, \dots$$

Non-linear parameters: grid search

One dimension, e.g. location along medial-lateral 100 possible locations Two dimensions, e.g. med-lat + inf-sup 100x100=10.000 Three dimensions 100x100x100 = 1.000.000 = 10⁶

Two dipoles, each with three dimensions $100 \times 100 \times 100 \times 100 \times 100 \times 100 = 10^{12}$

Non-linear parameters: gradient descent optimization

$$\varepsilon rror(\zeta) = \sum_{i=1}^{N} \left(Y_i(\zeta) - V_i \right)^2 \implies \min_{\zeta} \left(\varepsilon rror(\zeta) \right)$$

$$\zeta = a, b, c, \dots$$

Single or multiple dipole models - Strategies

Single dipole:

scan the whole brain, followed by iterative optimization

Two dipoles:

scan with symmetric pair, use that as starting point for iterative optimization

More dipoles:

sequential dipole fitting

BESA manual

BESA manual

BESA manual

Spread of cortical activity

Assume that activity starts "small" explain earliest ERP component with single equivalent current dipole
Assume later activity to be more widespread add ECDs to explain later ERP components estimate position of new dipoles re-estimate the activity of all dipoles Overview

Motivation and background Forward modeling Source model Volume conductor model Inverse modeling - biophysical models Single and multiple dipole fitting Distributed source models Beamforming methods Inverse modeling - independent components Summary

Position of the source is not estimated as such Pre-defined grid (3D volume or on cortical sheet)

Strength is estimated

In principle easy to solve, however...
More "unknowns" (parameters) than "knowns" (measurements)
Infinite number of solutions can explain the data perfectly
Additional constraints required

Linear estimation problem

Distributed source model

Distributed source model

Distributed source model: linear estimation

$$Y = G_1 q_1 + G_2 q_2 + \dots = \begin{bmatrix} G_{1,1} & G_{2,1} & \cdots \\ G_{1,2} & G_{2,2} & \cdots \\ \vdots & \vdots & \ddots \\ G_{1,N} & G_{2,N} & \cdots \end{bmatrix} \cdot \begin{bmatrix} q_1 \\ q_2 \\ \vdots \end{bmatrix} = \mathbf{G} \cdot \vec{q}$$

$$\vec{q} = \mathbf{G}^{-1} \cdot \mathbf{Y}$$

Distributed source model: linear estimation

distributed source model with **many dipoles** throughout the whole brain

estimate the strength of all dipoles

data and noise can be perfectly explained

Distributed source model: regularization

$$V = G \cdot q + Noise$$

$$\min_{q} \{ \|V - G \cdot q \|^{2} \} = 0 !!$$

Regularized linear estimation:

assumptions

Overview

Motivation and background Forward modeling Source model Volume conductor model Inverse modeling - biophysical models Single and multiple dipole fitting Distributed source models **Beamforming methods** Inverse modeling - independent components Summary

Spatial filtering with beamforming

Position of the source is not estimated as such Manipulate filter properties, not source properties No explicit assumptions about source constraints (implicit: single dipole) Assumption that sources that contribute to the data

should be uncorrelated

Beamformer: the question

What is the activity of a source **q**, at a location **r**, given the data **y**?

We estimate **q** with a spatial filter **w**

$$\stackrel{\wedge}{\mathbf{q}}_{\mathbf{r}}(t) = \mathbf{w}(\mathbf{r})^{\mathsf{T}} \mathbf{y}(t)$$

Overview

Motivation and background Forward modeling Source model Volume conductor model Inverse modeling - biophysical models Single and multiple dipole fitting Distributed source models Beamforming methods **Inverse modeling - independent components** Summary

Estimating source timecourse activity

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$

Estimating source timecourse activity using dipole fitting

$$Y = G_1 X_1 + G_2 X_2 + ... + G_n X_n + noise$$

n is typically small

Estimating source timecourse activity using distributed source models

$$Y = G_1 X_1 + G_2 X_2 + ... + G_n X_n + noise$$

n is typically large (> # channels)

$$Y = (G_1X_1 + G_2X_2 + ... + G_nX_n) + noise$$

Y = G X + noise

X' = W Y, where W ensures $\min_{X} \{ || Y - G \cdot X ||^2 + \lambda \cdot || X ||^2 \}$

Estimating source timecourse activity using spatial filtering

$$Y = G_1 X_1 + G_2 X_2 + ... + G_n X_n + noise$$

any number of n

$$Y = (G_1X_1 + G_2X_2 + ...) + G_nX_n + (noise)$$

$$X'_{n} = W_{n}Y$$
, where $W^{T} = [G_{n}^{T}C_{Y}^{-1}G_{n}]^{-1}G_{n}^{T}C_{Y}^{-1}$

Estimating source timecourse activity

$$Y = G_1 X_1 + G_2 X_2 + ... + G_n X_n + noise$$

Independent component analysis

Mixture of Brain source activity

Independent component analysis

Estimating source timecourse activity using independent component analysis

$$Y = G_1 X_1 + G_2 X_2 + ... + G_n X_n + noise$$

n typically the same as the number of channels

Y = G(X + noise)

includes line-noise, EOG, ECG and other noise that is visible on all channels

X' = W Y, where W maximizes the independence of X' rows of W⁻¹ correspond to G₁, G₂, ...

Estimating source timecourse activity

$$Y = G_1 X_1 + G_2 X_2 + ... + G_n X_n + noise$$

Source modelling of independent components

Components have (maximal) independent timecourses

- Unmixing of timeseries has already been taken care of
- Assumption: components correspond to compact spatial patches (or bilateral patches)
- Use simple biophysical dipole models to model the spatial component topographies
- It can be challenging to match ICA sources over subjects

Overview

Motivation and background

Forward modeling

Source model

Volume conductor model

EEG versus MEG

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Spatial filtering

Inverse modeling - independent components

Summary

Summary 1

Forward modelling

Required for the interpretation of scalp topographies Different methods with varying accuracy

Inverse modelling

Estimate source location and timecourse from data

Assumptions on source locations

- Single or multiple point-like source
- Distributed source

Assumptions on source timecourse

- Uncorrelated (and dipolar)
- Independent

Summary 2

Independent component analysis separates topography and timecourse no biophysical assumptions (yet) Inverse methods to interpret topography Single or multiple point-like source Distributed source

Source analysis is not only about the "where" but also about untangling the "what" and "when"

Independent components are dipolar

Delorme et al. Independent EEG sources are dipolar. PLoS One. 2012.

Independent components are dipolar

Delorme et al. Independent EEG sources are dipolar. PLoS One. 2012.