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Let’s recap evoked activity
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What now?
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Or what if the brain signal contains oscillatory components?

Cohen, 1972

Hoogenboom et al, 2006
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Outline

Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

Time-frequency analysis
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Spectral analysis 

Deconstructing a time domain signal into its constituent 
oscillatory components, a.k.a. Fourier analysis

Using simple oscillatory functions: cosines and sines
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Spectral decomposition: the principle
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Spectral decomposition: the power spectrum
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Deconstructing a time domain signal into its constituent 
oscillatory components, a.k.a. Fourier analysis

Using simple oscillatory functions: cosines and sines

Express signal as function of frequency, rather than time

Technique: Fourier transform

Concept: linear regression using oscillatory basis functions

Alternative techniques: Wavelets, bandpass filtering + Hilbert 
transform

Spectral analysis
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Spectral analysis ~ GLM

Y = β * X

X   set of (orthogonal) basis functions

βi contribution of basis function i to the data.

β for cosine and sine components for a given frequency 
map onto amplitude and phase estimate. 

Going from N time points
to N cosine/sine components

Each cosine/sine pair reflects 1 frequency bin
so ~N/2 frequencies can be estimated

Frequencies correspond to integer number of
cycles of basis functions in time window 

βcos

βsin
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Time-frequency relation: frequency resolution

Frequencies correspond to basis functions with integer number of
cycles in time window/epoch length (T)

Rayleigh frequency = 1/T = Δf = frequency resolution

Time window:

0.2 s

Frequency bins:

(0) 5 10 15 20 .. Hz

Time window:

1 s

Frequency bins:

(0) 1 2 3 4 5 6 .. Hz
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Consequence 1: each frequency bin reflects the signal’s energy in a frequency band.
Consequence 2: there’s no such thing as an instantaneous frequency



Time-frequency relation: Nyquist frequency

The highest frequency that can be resolved depends
on the sampling frequency 1/Δt = fsample

Nyquist frequency = 1/(2*Δt) = fsample/2

Sampling freq 400 Hz

Time window 0.25 s

Frequencies:

(0) 4 8... 196 200 Hz

Sampling freq 1 kHz 

Time window 1 s

Frequencies:

(0) 1 2 … 499 500 Hz
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Consequence: Signal energy at frequencies in the original signal > Nyquist end up elsewhere
in the spectrum (a.k.a. Aliasing, which is a special form of spectral leakage)



Deconstructing a time domain signal into its constituent 
oscillatory components, a.k.a. Fourier analysis

Using simple oscillatory functions: cosines and sines

Express signal as function of frequency, rather than time

Technique: Fourier transform

Concept: linear regression using oscillatory basis functions

Each oscillatory component has an amplitude and phase

Discrete and finite sampling constrains the frequency bins
-> spectral leakage

Spectral analysis
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Outline

Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

Time-frequency analysis
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• Signal components at frequencies not sampled with 
Fourier transform spread their energy to the sampled 
frequencies

Spectral leakage and tapering
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Spectral leakage
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Spectral leakage

20
Leakage can be ‘local’



Spectral leakage
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Leakage is also ‘distant’



Spectral leakage
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Edges seem to

pose problems



• Signal components at frequencies not sampled with 
Fourier transform spread their energy to the sampled 
frequencies

• To fit edges, many basis functions may be needed (lot of 
distant spectral leakage)

• Not attenuating problematic edges is equal to applying a 
“boxcar” taper

Spectral leakage in the frequency domain

0

1
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Spectral leakage in the frequency domain

sidelobesmain lobe
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• Tapering = attenuating potentially problematic edges of 
the signal by multiplication with a ‘taper function’

Spectral leakage and tapering
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Spectral leakage and tapering
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Spectral leakage and tapering
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Multitapers

Make use of more than one taper and combine 
their leakage properties

Used for smoothing in the frequency domain

Instead of “smoothing” one can also say “controlled leakage”
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Multitapered spectral analysis

Mitra & Pesaran, 1999, Biophys J
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Multitapered spectral analysis

Mitra & Pesaran, 1999, Biophys J

30



Multitapers

Multitapers are useful for reliable estimation of frequency 
components with a bandwidth > spectral resolution

Low frequency components are better estimated using a 
single (Hanning) taper

%estimate low frequencies

cfg = [];

cfg.method = ‘mtmfft’;

cfg.foilim = [1 30];

cfg.taper = ‘hanning’;

.

.

.

freq=ft_freqanalysis(cfg, data);

%estimate high frequencies

cfg = [];

cfg.method = ‘mtmfft’;

cfg.foilim = [30 120];

cfg.taper = ‘dpss’;

cfg.tapsmofrq = 8;

.

.

freq=ft_freqanalysis(cfg, data);
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Outline

Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

Time-frequency analysis
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Time-frequency analysis

cfg = [];

cfg.method = ‘…’;

.

.

.

freq = ft_freqanalysis(cfg, data);

‘mtmconvol’;

Typically, brain signals are not ‘stationary’

• Divide the measured signal in shorter time segments 
and apply Fourier analysis to each signal segment
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Time frequency analysis

Time (s)
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Time frequency analysis
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Time frequency analysis
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Time frequency analysis
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Evoked versus induced activity
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Noisy signal -> many trials needed
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The time-frequency plane
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cfg = [];

•cfg.method = ‘mtmconvol’;

•cfg.foi = [2 4 … 40];

•cfg.toi = [0:0.050:1.0];

•cfg.t_ftimwin = [0.5 0.5 … 0.5];

.

.

. 

freq = ft_freqanalysis(cfg,data)
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The time-frequency plane

The division is ‘up to you’

Depends on the phenomenon 
you want to investigate:

- Which time scale?

- Bandwidth?

cfg = [];

cfg.method    = ‘mtmconvol’;

cfg.foi       = [2 4 … 40];

cfg.toi       = [0:0.050:1.0];

cfg.t_ftimwin = [0.5 0.5 … 0.5];

cfg.tapsmofrq = [ 4   4  …  4 ];

.

. 

freq = ft_freqanalysis(cfg,data);
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Time versus frequency resolution

short timewindow long timewindow

48



Wavelet analysis

Popular method to calculate time-frequency 
representations

Is based on convolution of signal with a family of 
‘wavelets’ which capture the different frequency 
components in the signal

Convolution ~ local correlation 
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cfg  = [];

cfg.method = ‘…’;

.

.

.

freq=ft_freqanalysis(cfg, data);

‘wavelet’;

Wavelet analysis
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Wavelet analysis

Wavelet width determines the 
time-frequency resolution

Width is a function of frequency 
(often 5 cycles)

‘Long’ wavelet at low frequencies 
leads to relatively narrow 
frequency resolution but poor 
temporal resolution

‘Short’ wavelet at high frequencies 
leads to broad frequency 
resolution but more accurate 
temporal resolution
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Summary

This morning/afternoon: hands-on

Time-frequency analysis on real data

Different methods

Parameter tweaking

Power versus baseline

Visualization
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Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

Time-frequency analysis
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